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Introduction

The discrete wavelet transformation (see secfidnfor details) has become a very popular tool to
preprocess images to improve the performance of many tasks in the field of analysis and compression
of signals. In this work we focus on image data and the enhancement of the compression results.

Before the JPEG-2000 standard the block-wiseJRIER transformation was used for image pre-
processing in the JPEG File Interchange Format (JFIF) standard of the Joint Photographic Expert
Group (JPEG) for a long time. The purpose of both wavelet andAtER transformation is to
emphasize the important details of an image and suppress those which could be disregarded. The
preprocessing itself is reversible in both cases, but using@rk=R transformation algorithm it is
harder to avoid rounding errors than in case of wavelets. That is because one dimensional wavelets
can generally be computed with the lifting scheme which prevents from rounding erfors. [

Once the transformation on an image is completed the compression is performed. It can be either
lossless, which means that it converts to a more compact data representation only, or it can be lossy,
in which case details are canceled up to a given threshold.

One can verify intuitively, that the wavelet decomposition is a more natural description of images
than block-wise BURIER transform: Imagine you get a picture and the same picturB digitized
at the double resolution. When lossily compressihgnd B to the same file size, the reconstructed
images will differ quite much if packed with JFIF because the blocks used fordb& [ER transform
have different relative sizes compared to the sized ahd B. Thus the blocks are relatively smaller
in B and the scope for detecting structures is smaller.

The advantage of wavelet transformation is that since images are decomposed into informations
about structures on each scale, one can easily obtain an imageBremilar to A by ignoring
information about small scales. That is one possibility to achieve compression in a lossy way.

In this work a further attempt is started to improve the image transformation for better compression
results. The properties whose optimization is considered here are

1. High correlation between the relevances of details in the image and its transformed counterpart.
Since the compression effect is achieved by neglecting details in the transformed image, it is
important that details in the transformed image correspond to details in the original image and
that high values in the transformed image correspond to more relevant features of the origi-
nal image. This correlation can be mathematically expressed by close bounds of the wavelet
transformation operator.

2. Small values for the most pixels in the transformed images which ensure a concentration of high
values on a few pixels

This document is structured accordingly: After introducing in the mathematical background of the
wavelet transformation and declaring some notations used in this document in chapter 1, the second
chapter covers the determination and optimization of thelEbean norm estimations between signal
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and wavelet coefficients vector. A family of wavelets calledEBYSHEV wavelets is introduced,

which has symmetric filters as well as close norm bounds. We explore in detail later how weighting
the filters of a wavelet filter pair influences the norm bounds. In the third chapter an image dependent
construction of lifting steps with least mean square linear prediction is developed. Some variants of the
basic scheme are presented. All wavelets which are discussed in this thesis are tested as preprocessing
for a compression with an Embedded Zero TrEZT) coder. From all of these transformations
(CHEBYSHEYV, standard wavelet with weighting, linear prediction) the weighting method leads to the
most improvement of the compression rate.

| want to thank Prof. Dr. Paul Molitor for being open-minded for student’s problems always,
Dipl.-Inform. Jorg Ritter for his extensive support for this work, my siblings for proof-reading, Helmut
Podhaisky, Clemens Ladisch and Andreas Beckmann for their exhaustless pool of advi&gs<for L
and V. Marino and L. Schmiedtchen for kindly supporting me with needed articles.

This document and the C++ source code of the complete transformation and compression software
package are available from the included CD. This and possibly revised future versions may be also
downloaded from

http://www.henning-thielemann.de/
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Chapter 1

Mathematical background

1.1 What are wavelets?

Wavelets (little waves) are functions that fulfill certain self-similarity conditions. When talking about
wavelets, we mostly mean a pair of functions: the scaling functi@and the wavelet function.

[16] Several extensions to this basic scheme exist, but for the introduction we will concentrate on this
case. The self similarityr¢finement conditionof the scaling function is bounded to a filteh and

is defined by

$(t) =2 hpp(2t—k)  hp€R (1.1.1)
kEZ

which means that remains unchanged if you compress it girection by a factor of 2, filter it with

and amplify the values by 2, successively (figlir). One could also say, thatis the eigenfunction

with eigenvalue 1 of the linear operator that is described by the refinement. Since eigenfunctions are
unique only if the amplitude is given, the scaling function is additionally normalized to

> (k) =1
kEZ

to make it unique.
The wavelet function is built on¢ with help of the filterg (figure 1.2):

W(t) =2 grd(2t—k) gy €R (1.1.2)
keZ

¢ and) are uniquely determined by the filteisandg.
Variants of these functions are defined, which are translated by an integer, compressed by a power
of two and usually amplified by a power of2:

vuat) = 2Pt
put) = 27227t —1) (1.1.3)
with {j,{} C Z,t € R
¢ j denotes the scale — the biggethe higher the frequency and the thinner the wavelet peak

e [ denotes the translation — the bigddehe more shift to the right, and the biggethe smaller
the steps
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-1 0 1 -2 -1 0 1 2

Figure 1.1: Refinement condition of the scaling function — In gphe scal-

ing function is duplicated, translated and amplified, the used filter coefficients
h_1 = %,ho = 3,hy = 1 correspond to the scaling function filter of the CDF-
2,2 wavelet that will be quoted frequently in this document. In @nhe trans-
lated duplicates are added (s@and@ form the filtering). Stepc]scales the
function in abscissa and ordinate direction. A scaling function is characterized by
being invariant under the sequence of the sfap$b], [c].

1 0 1 2 2 1 0 1 2 3 4

Figure 1.2: Building the wavelet function from scaling functions — The steps
are analogous to figure. 1. The filterg is borrowed from the CDF-2,2 wavelet,
again, and is determined by the coefficients = —%,90 = —1,91 = 2,9 =

1 1
—193= "3
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The goal is to represent signals as linear combinations of wavelet functions at several scales and of
scaling functions of the widest required scale. The choice of wavelet functions as primitives promises
to be good, because natural signals like audio streams or images consist of the same structures at
different scales and different positions.

0
ro= Y adont D> dib

17 j=—J leZ

¢, d;,; are the wavelet coefficients. They form the transformed signal we want to feed into a compres-
sion routine.J corresponds to the number of different scales we can represent, which is equal to the
number of transformation levels that will be considered later in detail. The biftfee more coarse
structures can be described. A possible set of scaling and wavelet functions is shown if.figure

T~ T

P9y KA

Yo j/\/i ﬁ/\/ J\ﬁ *\/\ﬁ *\/\F —\Af
Figure 1.3: A basis consisting of scaling and wavelet functions of the CDF-2,2
wavelet — This example basis covers three levels of wavelet functions. Only a

finite clip of translates is displayed. To visualize the translation of the functions,
the abscissa is clipped to a finite interval.

What we usually start on, are discrete functions, known as sampled audio or image data. For
simplicity we consider only one dimensional data. In the case of the two dimensional image data
we process rows and columns separately. Its valuese_1, zg, x1, 22, . . . represent the amplitudes
of pulses. If we want to integrate such signals into the wavelet theory we have to readdhke
amplitudes of small scaling functions.

o= Y @iy

leZ

Figure 1.4 gives an example for a signal that is approximated with a linear combination of scaling
functions.

How can we convert between both signal representations? Retrieving the signal from the wavelet
decomposition is the direction which follows from the refinement relatloh.®) immediately. In the
wavelet decomposition of a signal we will replace all functions of the coarsest structure af leyel
their refinements. This way we come to the wavelet decomposition of Jevél what can be iterated
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Figure 1.4: A sine signal approximated by a linear combination of scaling func-
tions. [a] is the original sine@ is an approximation with scaling functions of
level 0,[c] is an approximation with scaling functions of level -1. If you have
decomposed a signal into its wavelet representation with at least one level (which
holds the information ), you can obtain the approximatiéa| by erasing the
wavelet coefficients of the wavelet functions at level O in the approxim@n
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until reaching leved which is equal to the searched signal representation.

2(t) = ao_nl(t Z > djib(t)

leZ j=—J leZ

According to the definition of;;,v;,; (1.1.3

0
9=7/2 (Z a2t =1+ > d_pw(2 7t - l)) + D du(t)

leZ leZ j=1-J leZ

Apply refinement conditionsl(1.1),(1.1.2

_ 9l-J/2 (ZCthkgb(Q- 2t =) — k) + ) doy > grd(2- ‘]t—l)—/@)>+

lEZ kEZ lEZ keZ
0
DY diu(t)
j=1-J leZ

Substitutel :=

0
=2l=J/2 Z <Z (crhy +d_yrgr) #(2- (277t — L) — k)> i Z Zd?l%l(t)

keZ \LeZ j=1-J leZ

Substitute back := 2L + k&

=273 <Z cohi—ap + ) d—J,LQl—QL) (27t~ Z > dia(t)

17 \LcZ Lez j=1-J I€Z

Y
Cl.—

0
— Z V26 p1_ g (t) + Z Z dj i (t)

ez j=1—J I€Z

Indeed, this is the signal representation/as 1 level wavelet decomposition. We see that the
new coefficients; are derived fromy; andd_ ;; by a kind of filtering. The difference to traditional
filtering is, that for ever, ¢; depends only orh;, andg;, with evenk, and for odd,, ¢; depends only
onhy andg, with oddk. This is the reason why we will split bothandh in its even and odd indexed
coefficients for most of our investigations.

It is easy to see that the conversion from wavelet coefficients to signal values is possible without
knowing ¢ or 1, the only information needed, are the filters which belong to them. Under certain
conditions, the same is true for the reverse conversion. This will become clearer in settibrit
allows us to limit our view to the filterg andh and hide the functions and« — they will not appear
any longer in this document.

The Discrete Wavelet TransforrD{VT) which is used to analyse signals for finding out specific
properties or for further processes like compression consists of applying thefiteds to the signal
and obtaining a high frequency band H and a low frequency band L, both with the half resolution in
of the input signal. As in figur&.5the DWT is usually recursively applied on each L band to explore
bigger structures of the original signal.

It is possible to extend this scheme in a way, that the H bands are filtered and split, too.
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L1 L2

LO
s EE= SN =
H1T -
HO
DWT (analysis) processing v erse DWT (synthesis)

Figure 1.5: The tree of levels as produced by the wavelet transformation. — The
input is split into the bands LO and HO with the half sample rate by applying the
filtersh andg, respectively. Then in turn, LO is splitinto L1 and H1 with the same
filter procedure and so on.

1.2 Notations

Let us introduce some advantageous notations that shall be used throughout this document.

Since we work with discrete signals here, signals and filters can be presented by vectors. In many
cases there is no need to distinguish between signals and filters. In these cases we will call them
vectors in general. A signal starting at sampling time: € Z ending ath € Z, m < n is written as

T
T = (.’Em,flfm+1,... 7xn—17xn)

Analogous a filterf with coefficients indexed from. to n is declared with

f = (fmvferl?"wfnfl,fn)T

Indeedm, n may be negative, which is uncommon for the usual vector notation. Because of that,
the range of indices is not obvious in general. For that purpose we will emphasize the index O:

(fmvfm+17"‘7f—17f07f17"‘7fn—17fn) (m < 07 0< n)

Usually, we will choose the indices andn so that the leading and trailing coefficiefat and f,,
are non-zero. The length of a vectors defined as

lz] = n—m

This means that a vector consisting of one component has the length 0! This is wanted because it
simplifies length calculations for filters applied to signals or for cascaded fittersin + 1 is called
thenumber of taps

Theconvolutiony = f * z of two vectorsf andz is defined by the calculation of the components

of y:

Yy = Z TeTji—k

keZ

One can easily verify that it holds:

lyl = [f]+ |zl
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Unless stated otherwise, filter coefficients and signal values are complex numbers.
Sometimes it is an advantage to imagine signals and filteraa&ENT polynomials.

1 -1
2(2) = T+ rp2™ T T 12" 2"

We will use the notations andzx(z) simultaneouslyz means the vector as well as the associated
polynomial. Vectors: andy can be convoluted x y whereas the polynomialsandy are multiplied
x - y — the operation is the same. In oppositiorztac(z) is a complex number. It is the value of the
polynomial at the argument E.g. it is not useful to differentiate(z), but differentiating ofz is. "o’
should be used as general place holder for the argument of a polynomial. E.g. we can(w#ijte
insinuating thatr(o?) is a polynomial again.

With this notation we can write some other things quite easy.

z(e”™) the complex amplitude of the frequeney € R in the sig-
nal z, thusz(e~™) provides the BURIER transform of the
signalx when varyingu

x(—o) every even component afis negated

x(0?) a zero coefficient is inserted between every component; the
polynomial gets even-indexed coefficients exclusively

z(o™1h) the components are in reversed order

f(z)-z(z) = (f xx)(z) the productof polynomials is equal to the convolution of their
coefficient vectors
f(o) = f(o™1) identifies a symmetric filtef, if all coefficients are real

The conjugated filtef of a filter f will be defined as follows:

f = (fmvferlw--vfnfl»fn)
f = (fnafn—la"'afm-i-lvfm)
Different from what you might expect, it does not hold, that the so defined conjugated filter assumes

the conjugated values for equal arguments (f.ez) = f(z)) in general. This is only true for argu-
ments on the complex unit circle, i.:| = 1, since

becauséz| =1

kEZ
= f(2) (1.2.1)

The definition of conjugated filters helps us to explain symmetric filters. Since one expects of a
symmetric filter f with real coefficients that it does not change the phases of the frequencies of the
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signal it is applied to, we will use symmetry and linear phase behaviour as synonyms in the complex
coefficients case, too. That means a symmetric filter has to fulfill

Vizl=1: f(2)eR

or equivalently

1.2,

Vizl=1: f(z) = J(z) "2V T()

Since the BURIER transformation is injective it follows’ = f. That means thaf = f is an
equivalent formulation for linear phase filters.



Chapter 2

Transformation norm bounds

For lossy compression it is important to know how much a modification of the transformed signal
distorts the restored signal. You expect that small modification of the transformed signal causes small
distortions in the restored data. But there is an uncertainty in general.

Consider a vectar. of the input signal (e.g. an image or audio data) and the operHtiavhich
is performed by a complete wavelet transformation. The transformed dimails now modified
by a lossy compression. The resulting signal after decompression shall be dendiég Bhis is
permitted, because every wavelet transformation usable for compression must be invertible, which
means that for any modified transformed data there is an restored inputsgignal

We are looking for an accurate estimation of how much the signal changes if a modification occurs
on the transformed signal. For measuring the difference of two signals the peak signal-to-noise ratio
(PSNR, see [L7)) is widely used. It is a compromise between visual perception and easiness of
calculation. ThePSNR is a logarithmical scaled form of theleLiDean metric where the possible
value range of the sampled data has an influence, too.

Letz, y be signals, each consistingof/alues with a possible range 0f zm.x] (€.9.]0, 255] for
8 bit images), then the peak signal-to-noise ratio is defined by

Lmax * \/ﬁ dB
Iz — yll,
= 10dB- (logjg(22.x - n) — 2logyg [z — yl,)

PSNR(z,y) := 20log,

Since the logarithm function is monotonous and the value range is constant, any optimization of
the PSNR value can be done through optimizing the EDean norm, which is much easier.
Translated to this terms, we want estimations [for— y||, depending or|iWz — Wy||, of the
form
Va,y: Az —yl, < [Wa—Wyl, < B- |z -yl

where the constanté and B (bound$ have to be determined. Good constafitand B are those, that
lead to equality for some (not necessarily equal) pairs andy:
dr,y: A-llz—yly = [Wa - Wy,
Jz,y : Wz —Wyll, = B-[lz —yll,
In the context of wavelet functions, constartsind B similar to these are calledame bounds

Estimations are given ird], chapter 3.3. Since we are working with discrete sequences of coefficients
instead of continuous functions and wavelet functions, this is not what we are looking for.

11
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Since the wavelet transformation is a linear operator we get
Wx —Wy=W(x—y)
and we can replace — y by z.

12 = ylly = 2l
Wa—Wylly = [[Wzl,

Thus we can limit the consideration of bounds to single signals rather than pairs of signals.
Vz: Azl < Wy < B - 2],

The discrete wavelet transformation is a linear operator on a finite vector space and thus associated
with a matrix. Matrix operations are always bounded and its smallest bound is oadleck norm
So, on the one hand we can write as upper bound estimation

Wzl < (Wl - (2]l

on the other hand we get a lower bound with help of the identity W ~1W z, provided thaf’
is invertible

Izll, = [[W 1wz,
W=, - Wzl (2.0.1)

IN

and finally
WIS IWelly < llzll, < W], - Wl
or equivalently
_1n—1
Wl - ll2lly < Wzl < WL, - 2]l

We note thaﬂW—1 H;l is the lower bound for an operattr. Missing a symbol for lower bounds,
it shall be used even in the case tiEtis not invertible. If17 is not invertible,HW—lH2 could be
interpreted as limibo because there are non-zero vectomshich will be mapped tdVz = 0, and

becauseZ.0.9) itis |[W!||, > II%!TIQ = oo and this mean#W—luz_1 = 0.
Calculating the norm bounds for the whole transformatioms too complex, thus we will content
with the bounds for one transformation step. How does the bounds for the whole transformation
correlate with the bounds for the single transformation steps?
Let T}, T} be some transformation steps. We know from Linear Algebththat the EuCLIDean

matrix norm is sub-multiplicative:

175 - Telly < T3l - 1Tl (2.0.2)

We have to take into account, that later transformation steps work only on a part of the data that
the former transformation steps have produced. But this does not change the bounds of the single
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transformation steps because there are always sigrthist are transformed tp=T7;_1 ----- Ty - x

where all coefficients of that will not be processed li¥; are zero already. In other words: When
searching for bounds for transformation steps, we need not to distinguish between the levels where
the transformation is applied.

Thus forJ transformation steps it follows:

J—-1

J—1
Wi, =\ T[ 7 < [Tz,
j=0

Analogous for the inverse transformation it follows:

0 1
I, =| I 77| <11 |% ],
j=J—-1 9 J=0
0
I 7 =107,

J 1 9 Jj=0

—1n—1
W =Hl, " =

For identical steps this leads to:

J—1
J
Wi, =] < T3
—1

0

1y- _ T

w2 = I 71 =07,
=J—

J 1 9

Remark.We realize, that the consideration of single transformation steps instead of the whole trans-
formation results in coarser bounds.

2.1 Determining the EucLIDean norm bounds for one wavelet trans-
form step

2.1.1 Simple filters

The wavelet transformation consists mainly of signal filtering. Thus we will start on calculating the
norm bounds when applying a plain linear filfeto a signatz:

y:=fxzx
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The convolution performed by can be written as a matrix

fn fnfl fan fm+1 fm 0 o 0 0 0
0 fn fn—l fm+2 fm+1 fm o 0 0 0
0 0 fn fm+3 fm+2 fm+1 0 0 0
0 0 0 fnfl fn72 fn73 fm 0 0
0 0 0 fn fn—l fn—2 fm+1 fm 0
0 0 0 0 o far o fme2 i

In general, a matrix norrm-|| which is associated with a vector norm must fulfill for vectors
Voo || Faf| < [[F]] - [l
and the matrix norm is the smallest possible constant in that inequality. Thus it is defined as

[ F]

| F|| = sup

Pt

S S P

x#0

|

B

lety :

5

= max | Fyl|
lyll=1
In case of the EcLIDean norm an identity is known, which requires the calculation of the eigen-
values ofF ' F.

1Fls = [ Ama (F'F)
[#70" = e (F7F)

It is also well known, that the eigenvectors,.x andx,;, associated with the eigenvalugs .
and )\, respectively, are the vectors where the bound estimations become equalities:

”F'mmaXHQ = HFH2'||33maXH2

HF'wminH2 = HF_1H2_1 ' meinHQ

But determining the bounds with the help of the filter operation matrix is costly and the result
depends on the signal length. But we remember that therRF=R transform turns filtering into
multiplying [5] and that the EcLIDean norms are left unchanged due fRBEVAL'’s equation.

We have not considered values outside the known signal so far. We could fill them with zeros, or
we could mirror the signal at its time boundaries to obtain a continuous extension (this is widely used
for the computation of the DWT), but for easy filtering using the frequency spectrum the best choice
is the assumption of periodic signals.
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Let n be the length of: and assume this signal is periodic bythen¢” := e=27%/" dentifies
the frequency which hascycles within then values of the signal. With it you can describe the signal
and the filtered signal in the frequency space by

o= (2(¢),x(CY), .2
Frz = ((f*2)(C), (F*2)(CY),.n., (fra)(ch)T
= (F(C) - 2(C), £ (¢, FEPTH - a(Ch)

T

)
)
PARSEVAL now tells us that

[zl =2l

Ifealy = ||F*a,

In other words: In the frequency space the filter operation is associated with a diagonallﬁ1atrix

fxx = F-2
(<) 01 0
0 0 - FEY

Since the norms of the vectors are equal, the matrix norms are equal, too, becauseitizeeBn
matrix norm is defined via the vector norm.

1Fl, = HFH2 (2.1.1)

=T .
We know thatF’ F'is also a diagonal matrix then, and in this case the eigenvalues are just the
values on the diagonal and the associated eigenvectors are unit vectors. We obtain

F

2

\/max{f(ck)f(ck) : k:O,...,n—l}

= max{ f(Ck)f(Ck):k:O,...,n—l}
max{‘f((k)’ :k:O,...,n—l}

with & = ¢, the kth unit vector as the one WheH@@‘L reaches the upper bound.

For better comprehensibility, we will also derive this conclusion immediately without usage of
eigenvalues.

First, we show that the largest absolute frequency coefficient of the filter vector is a bound for the
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filter operation performed by:

1S+l
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|7+,
S R (O NN (S PR (S Vil |

1

FE)F(S) - 2(E)x(¢)

2

3
|

.
Il
=)

let k be an index with maximur*-uf(g’“))

IN

3
|

1

F(ER)F(EF) - x(¢I)2(¢7)

.
Il
=)

n—1

HISIENDDEEEE)
j=

£ Dl

You easily check that the bound is reachedifct éj,

H(f (€% - () FCMTY) - x<<"-1>)TH

2

= |7t &),
= |71,
(IR

We see that both ways lead to the same result.
The kth unit vector in the frequency space is associated with a harmonic oscillation with the

frequency2rk /n.

frequency.

Tmax = (C()’ Ck’ <2k’ o vC(n_l)k)T

That means that the norm bounds can always be reached with a harmonic oscillation of a specific

What we have derived as norm for the filter operation performed il depends on the signal
length. To overcome this problem we have to extend the search for a maximum to different signal
lengths ofn. We slightly expand the meaning éf to the signal length independent filter operation

performed by convoluting witlf:

Because ofZ.1.) itis

17l = | 7],

= sup {max { ‘f(e_%ik/")

:k:O,...,n—l}:neN}
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Substituter := k/n

= sup {’f(e_%”)‘ :r€eQn[o,1)}
|z|, f, e* are continuous iC

= sup{‘f(e_%")‘ :reRN[0,1)}
=sup{[f(z)|:2€C A [z| =1}

f is a polynomial and thus continuous@h
=max{|f(z)]:z2€C A |z| =1}

As shown in figure€2.1we can interpret this as the search for a maximumy ¢f)| on the complex
unit circle.

¢ (™|

&R,
-

n—10 1 2 k

Figure 2.1: Search for a maximum on the complex unit circle — For a signal of
the lengthn the circle is divided into: partitions. We have to determing(z)|

for each of the: points on the circle and choose the maximum value out of them.
As the signal becomes longer, the grid will become finer. In the limit process we
have to consider the whole continuous circle.

2.1.2 Filter matrices

Working with multiple bands:  Now, consider filters which are used for wavelet transformations.
More precise: We consider filters that are used in each transformation step. Here we process the signal
with d filters rather than one filter. Usually, two filters are used for the wavelet transformation in one
dimension, i.ed = 2. If working in two dimensions, the number of channels (associated with the sub
pictures) increases = 4. Eventually, every other number of filtedss possible for more general
wavelet schemes, independent from the number of dimensifns |

As we have seen ir2(0.2, we can get more accurate norm estimations, if we merge some consec-
utive transformation steps. Merginftransformation steps each consistingiofwavelet filters can
be expressed by a single filter matrix operation vﬂfgol d; output channels. In case of a four-filter
wavelet transformation of an image ovétevels the merging would result intodd -filter wavelet.
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Given a number of filtersy, f1,. .., f4—1, the input signak;, the d output bandsy;, you can
describe one wavelet transformation step by

n—1
Yoo = Zfoxﬂﬂ—k
k=0

n—1
Y0 = E fLeTi—k
k=0

n—1
Ya-10 = Y fa-1kTa-1-k (2.1.2)
k=0
n—1
Yor = Zfo,kxdfk
k=0

n—1
v = > fieTari-k
k=0

which is illustrated in figure.2, too.

mpute = [ L]

fofi fo oo fo fu
EEENE
Band 0:y - [ ] DD
Band 1.y,

Output{ Band 2:y, — J

!

\ Bandd-l:y;, 1 —
Figure 2.2: Wavelet transformation step witfiilters

This representation has the disadvantage that it differs from the original filter scheme. Only every
d. output value of a specific filtef; is really used here. We can reduce the new scheme to the plain
filter scheme if we split all filterg; and the input signal into d sub-filtersf; ;, and input bandsy,
respectively, with) < k < d. The coefficients of the sub-filters and input bands are:

fikg = [firdk
Tkl = Tldtk
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We will not consider every coefficient explicitly, but we will work with the denotatigns andz;,
for the sub-filters and input bands. Unfortunately the denotatjofor the kth input band coincides
with the symbol for thekth value of the whole input signal. Since we will no longer consider the
input signal as one object, we mean #ik input band when writing;;, from now on.

With this convention we can rewrite the indexed equatiéh$.9 into one matrix multiplication

with the convolution as “scalar” multiplication operation.

Yo fo,0 foqx - foa—1 x0
Y1 fi,0 fir o fia— 1
. = . : , } * ) (2.1.3)
Yd—1 fa-10 ficia - fa—14—1 L1
fZ: f;:

7=

F is the so callegholyphase matrix
Let us find an expression in the frequency space equivalerit. 103, We introducedr which

contains all input bands, in each component one ofithends. Because of this one could imagihe
as a matrix, but this is disadvantageous, because one would not have an explanaticnifahen.
We better imagine’ as a vector consisting of polynomials. Théfx) contains the amplitudes of the
frequency associated withfor each band. We can also interpret this, as if each componerdtofes
the spectrum of one band. Similar interpretations can be foung dod F.

Z(z) = (zo(2),z21(2),... ,xd,l(z))T
g(z) = <y0(2)7 yl(z)v <o 7yd71(z)>T

foo(z)  fou(z) - foa-1(2)
Flo) = fl,()'(z) f1,1.(z) f1,d:1(2)

fdfl.,[)(z) fdfl.,l(z) fdfl,d.fl(z)

Since the discrete #URIER transformation is bijective, we can consid@rl(.3 at each of the
frequenciess = 27k/n and get an equivalent formulation wigh= e =27/

Vke{0,....,n—1}:  F(¢*) =F(*) - 7(H)

We put everything into one big matrix.

7c) FIC) 00 7(¢")
N R <) o1
7 ) 00 o Feh) \ae

Determining the norm bounds: Finally, we have to find the norm of the big block diago#L*)-
matrix. It is not difficult to see, that theUdeLIDean norm of the big matrix is equal to the biggest

norm among the F blocks.

:k:O,...,n—l}

2

[diag (F(C), F (&), FC )|, = max {|[F(e24m)
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We also see that the vector, where the upper bound is reached, has thg {6ymé;,.

That means that the bound is only reached, if all input bands contain harmonic oscillations with
the same frequency but with specific phase differences and amplitude ratios.

We can formulate an identity analogous teRBEVAL’s theorem that proves, that the operator
norm of the operation performed i.(.4) is equal to that ofZ.1.3.

2 2 2 2
)|y = [lzolly + llzallz + - -+ llza-ll;
—12 —~12 2

= |[Zoll3 + 171l + - + [|Za=3 ]l

d—1n—1

=30 2(¢F)a(ch)

j=0 k=0
Sort by frequencies instead of bands first

n—1d—1

=> > i(Fa;(¢h)

k=0 j=0
= | Z(CO)l; + | FCHl5 + - + |7 D3
2
= ||, 2,z

Thus, the vector norm over all bands (of either the input or the output) is equal to the norm over the
spectra of all bands sorted by frequencies. This in turn means, that the matrix norm in the frequency
space is equal to the operator norm of our filter matrix in the time space.

We want to achieve independency from the signal length again. This is very similar to the one-
dimensional case with one filter and one input band. We want to tEwssedenotation for the signal
length independent filter matrix operation, again.

|Fll, = sup {max{Hf(e—Qm‘k/n)

= sup{H]:(e_er)H2 :reQnio,1)}
= sup{H]—"(e*Q’m)H2 :reRN[0,1)}
= sup{[|[F(2)lly:2€C A [z[=1}

= max{||F(2)||,:2€C A |z|=1}

= max{\/)\max<]-‘(z)T}‘(z)):z€C A ]z|:1}

In the same way you find the lower norm bound of the filter matrix operation

Y, = max{\/)\max (mTf—l(z)) :2€C A 2| = 1}

2:k:(),...,n—l}:nGN}

= max \/)\min (]—"(z)T}"(z))_lzzec A \z|:1}

1
F(z) ]:(z)) :2z€C A \z|:1}

[FH," = min

f(z)T]:(z)) z€C A |zl = 1}
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Inversion of filter matrices: Let us observe some details of the invertibility 5f We have seen
that one wavelet transformation step can be written as

y=Fx*T

The transformation for image preprocessing should be lossless, so that a lossless compressor can
be implemented with it. In mathematical terms: The transformation operator should be invertible, i.e.

T=F lxyg

It simplifies theory and implementation, if one can use the same structure for the analysis and
synthesis transformation. In other words, we are interested in thssehereF ! is a filter matrix,
too, and it holds

FlxF=1

With a determinant that uses the convolution of filters as multiplication, the determinant product
theorem holds.

det(I) = det (F 1 *F)
1 = det(F1) «det(F)

Bothdet F~! anddet F are polynomials. Since we work with filters of finite lengfimite impulse
response filters, FIRfactorization of 1 into polynomials is only possible if the factors are monomials.
(This is analogous to the casef 2 matrices presented ir]}) Let bedet F = ¢-2* with ¢ € C\ {0}
we can eliminate the scalingand the shifting:* without loss of generality:

The shiftingz* can be avoided if the signal is rotated byositions. This is no serious modifica-
tion, because the signal was assumed to be periodic. In return the réwarefrotatedk mod d rows
upwardly, the lask mod d rows are divided byL§J+1 and the others are divided bﬁJ . With this
shifting it can be always assured thiat 7 = c.

The scalinge can be removed if every filter of is divided by the saméth complex root ofe.

This is equivalent to the uniform amplification of the output bands{fiy ThusF can always be
normalized tadet 7 = 1. This does not change the characteristics of the output signal and may help
to balance the numerical properties of the analysis and the synthesis transformation.

With the same structure for a filter matrix operation and its reverse operation, there is no need to
distinguish between them in further explorations. The difference within the whole wavelet transform
is, that the decomposition transformaticanélysid requires the splitting of an input signal intb
bands before applying the filter matrix, whereas the matrix operation in the composition transforma-
tion (synthesisis post-processed with the joining (interleaving) of theutput bands.

In the following sections we will consider the decomposition direction exclusively and we will
always assert, that the decomposition is invertible.

2.1.3 Filter2 x 2 matrices

We want to deduce the case of 2 filters from the previous results. Our filter matrix is now

_ (foo for
Fo= <f1,o f1,1>
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Since we can assundet 7 = 1 according to sectiof.1.2 the inverse matrix can be easily given.

1 _ ( ha —foa
Foo= <—f1,0 f0,0> (215

We will switch to a shorter notation foF as used in4]. The names: andg for the filters were
already used in the introduction in sectibri.

P - (he h0> (2.1.6)
ge Yo

Note that we talk about the decomposition transformation. Because of that we had to use the tilde
denotationP, ge, he, . . . if strictly following [4], but we have omitted it for simplicity.2(1.9 shows
that the structural difference betwerand P is even smaller than in the case of arbitrary number of

bands.

Determining the norm bounds: For determining the EcLIDean operator norm aP we have to
know the eigenvalues @ P,

Tp _ <hehe +Gege  heho + gego>
hohe + %ge hOhO + %g()

_ (z ﬁ) 2.1.7)

The eigenvalues aP’ P can be obtained as zeros of the characteristic polynomﬁFd?:

0 = det (FTP—AI)

a— A b
= det( b c—)\>

= (a—N)(c—\)—bb

= M—(a+c)\+ac—bb (2.1.8)
A (?TP) = % <a +c+ \/(a +¢)? — 4(ac — bb)> (2.1.9)
= ;<a+cj: (ac)2+4bb> (2.1.10)

We can see in4.1.10 that the radicand is non-negative and that is whg always real. Addi-
tionally the formulation in 2.1.9 makes clear thak > 0. You can also derive both facts from the

general theory of matrices, however.
For simplification we want to introduce two variables which will be used frequently in this work:

(a+c) (2.1.11)
= 1 (hehe + Gege + hoho + Fogo) (2.1.12)

i
I
= D=

= —|IP|I» (FROBENIUS norm of P)

= hego — hoge (2.1.13)
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=
- —=T
ac—bb = det(P P)
= det(P)det(P)
= qq
=
0 = XN —-2p\+7q

= pEVp:-1qq (2.1.14)
Ap = pHVPP-qq
A = p—VPP-qq
IFl, = \p+Vp*—1q

17, = Ve-virP-w (2.1.15)

Remember thap andq are functions ofz, a value on the complex unit circle which marks the
considered frequency. To find the norm of the filter matrix operation we have to search for the max-
imum A regardingz. Since the square root expression l(14) is non-negative, it is clear that the
maximum A among allX's is a A\, and the minimum\,,;, is one of the possibla_'s. As ex-
plained in sectior2.1.2 ¢ = 1 can be adjusted for every invertible wavelet filter pair. That is why
A+ - A_ = gq = 1 and that means that, is maximal if and only ifA_ is minimal. Since\, depends
monotonely omp, A is maximal if and only ifp is maximal. One consequence is that the lower and
the upper norm bounds of a wavelet transform step are reached when a certain frequency occurs on
both input bands. They may differ in phase and amplitude, though.

An example is given in sectioh 1.6

Signals where the bounds are reached: We can calculate a signal where the norm bounds are

reached by calculating the eigenvectorsfbij for that z where A, (z) = Apax. TWO cases may
occur:

1. >\min = >\max
Because\inAmax = 1 andA > 0 it must be\,,.x = 1 and the characteristic polynomial is
(A — 1)2. According to @.1.9 it follows b = 0 andP’ P = I. This means that any vector
is eigenvector of the eigenvalue 1. This denotes the case of unitary wawetatsggponalwhen
working inR).

2. Amin < Amax
That means that the multiplicity of each of the eigenvalugg and\,. is below 2. Since any
eigenvalue is associated with at least one eigenvector, ygthand \,.x must have exactly
one eigenvector. You can easily guess it:

(d, b))l = N—¢,b)T = (; <a—cj: (a—c)2+4bb> ,b)T

and this is the only one, when ignoring any scaling.
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(coendC™h ¢, dCO, 00, dCH bCH )

is the signal where the upper bound is reached # )\,,.x — ¢ and the lower bound iff =
)\min — C.

2.1.4 Conclusions

Balance of norms: An interesting conclusion is that if the polyphase determinant is normalized to 1
the geometrical average af,;, and Anax (v AminAmax) 1S 1. That means that the lower and upper
bounds are balanced or in other words that the transformation does not change the norm of the signal
on average.

Invertibility: ~ You can also verify invertibility conditions with2(1.14. According to £.1.19 it
holds i, = 0 < HF*H;1 = 0. We will show that\,;,, = 0 is equivalent to singularity of".

1. H:H
Amin =0 = |[|F|l,=0
= Jz:z|,=1 A [|[Fz|,=0
= dr:x#0 AN Fr=0
= ['is not invertible
2. H<:H

Let F' be non-invertible, which means that for some differeny it is

Fz = Fy
=0 = Fzx—Fy | Fis linear
= F-(z—y)
0 = |F-(@-y,

>V Amin - [ =yl

Becauser # yitis z —y # 0 and||z — yl|, > 0, thus Ay, = 0.

Indeed, singularity of is equivalent to\,,,;, = 0 which is equivalent tg = 0 for somez because
of (2.1.19. This coincides with our observation in sectidr..2 that the determinant of an invertible
polyphase matrix can only be a monomialz* with ¢ # 0, |z| = 1.

Unitarity:  You can also derive the condition for unitarity (orthogonality if workingRi of F,

which is already known from, theorem 10.1.6, that mear® F = I. In case of two wavelet filters
you get
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Fehe +Gege = 1
hoho + G090 = 1 (2.1.16)
Fohe + Goge = 0

Because of4.1.17) and @.1.19 this is equivalent to
F'F=I & p=1 A gg=1

Because of our conventiong= 1 is always ensured, so that= 1 is the important criterion.

Unitarity and symmetry:  Additionally, we can derive from2(1.19 the fact, that the Lazy wavelet
(which is associated with the identity matrix as polyphase mafpfix= I) is the only symmetric
unitary two-channel wavelet with an odd number of filter taps. Note that this situation is different
from the one considered if], theorem 8.1.4, where filters with even numbers of taps are considered.
Therefore the result found there is the AR wavelet.

We can prove our statement in two ways:

One possibility is to write down the coefficientsiofh. +gcg., compare them with. .., 0,1,0,...)
and induce from the outer to the inner coefficients, that all coefficients of/ho#imd g. have to be
zero, except oh, o which is 1.

The other way can be written more formally:
Let A, ho, ge, go DE SYymmetric in the sense that

he(z) = he(2) 7e(2) = ge(z) 27!
ho(z

() = ho(2) 2 B(z) = go(2) (21.17)
hehe(2) 4 Gege(z) = 1 | symmetry ofh, ge
h2(z) + 2g2(2) = 1
h2(2%) + 2%g2(2%) =1
(he(2?) +i2ge(2?)) (he(2%) —izge(2%)) =1 (2.1.18)

We know that 1 can be factored into monomials only, that means

he(22) + i2ge(2?) = ez

he(2?) has only even exponents forwhereaszg.(z%) has only odd exponents. This means one
of he andg. must be zero and the other a monomial. This leads to two cases:

1. he(2?) =0

(2.1.19 = 22¢%(2%) = 1 = 2g.(2%) = £1 which is obviously impossible, becauseg. (z?)
contains only odd exponents of

2. i2g.(2?) =0
(2.1.19 = h%(2%) = 1 = he(2?) = £1 = h.(z) = £1 which is what we have claimed.

The same strategy can be used to conclude/thiat) =0 A go(2) = £1.
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2.1.5 Approximation of bounds for 2-filter wavelets

Transform z to real axis: In section2.1.3we found out that we have to maximiz¢z) on the
complex unit circle in order to maximize; (z) and to minimize\_(z). Sincep is a polynomial we
can do this by locating the zeros of the derivativepofA problem that remains is that we have to
differentiate along the circle.

One possibility to fulfill this restriction, is to consideras a function of the angte:

z=e"

The derivative op regardingw is a polynomial inz again:

d d i
") = aa2me
kEZ

d ikw
= Zpk@e
keZ

— Zpkzkezk‘w

kEZ

= ikak-zk

keZ

We have to find all complex zeras of %p(z). From allz; that are on the complex unit circle
(|z;| = 1), the one with maximap(z;) is the one we need.

Calculation may be simplified, if we reduce our problem to a function on the real domain. We can
do this by projecting(z) on the plane spanned by the real axis and the value axis. The symmgtry of
assures that corresponding values on both half circles are equal. We simply use the real pad of
rewrite the polynomialg andq to depend from it. As sketched in figue3 the values for: = e
forw € [—m, 0] are mapped to € [—1, 1].

ro= R(z)
= 3(z+72) | 2| =1=%z =271
= 3(z+27")
p(r) = p(z) (2.1.19)
a4(r) = qq(z)

Sincep andgqg are symmetric polynomials it is possible to determine the coefficients for the
polynomials inr if we start on the outermost coefficients pfandgq, then subtract the found
powers expressed i) then iterate on the remaining polynomial. Tinaple procedure in figur@.4
shows the details.

Find extrema: Now we have to find the global extrema of the real polynomialthe rangd—1, 1].
We have to search for the real zerp$, r1,...,rm—1} Of %ﬁ(r), wherem denotes the number of
real zeros. For simplification we introduce
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-1

Figure 2.3: The transformation fromto r corresponds to the projection of the

complex unit circle onto the real axis.

transformZ2R := proc(pp, z, 1)

localp, ¢, ¢, k;
p:i=pp;
q:=0;

while 0 < degree(p) do

if degree(p, z) + ldegree(p, z) # 0then
ERROR(“Non-symmetric exponent3”

fi;

if lcoeff (p, z) # tcoeff(p, z) then
ERROR(“Non-symmetric coefficients”

fi;

¢ := lcoeff(p, 2);

k := degree(p, 2);

p:=p —expand(c x (z +1/2)%);

gi=q+ecx(2xr)F

q:=q+p;
RETURN(q)
end

Figure 2.4: maple procedure for converting a polynomial efon the complex

unit circle into a polynomial of € [—1,1]

27
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Further on we have to take into account, that the global maximum might be at the borfiets Of
Thus it holds that

max z) = max p(r
zeC A \z|:1p( ) reRﬂ[—l,l}p( )

= max{p(r):re{-1,1,70,71,...,"m-1}}

In our software package the search for zeros is performed bgvamdN-MAEHLY iteration [LY]
which calculates all zeros simultaneously. bebe the degree of (m < n) and{r§,r},...,r5_;}
the set of approximations of the zerossgf). We choose one zero of them, sgy ; and divides
by a polynomials* which consists of all other approximated zeros and ruresviNON iteration on
this quotient functiont := 2. If the approximations of the other zeros are goodiill be almost
linear, otherwise is a function that has the same zerog and additionally some singularities at the
approximated zeros.

n—2

s*(r) = Z(r—r;’;)

o= r— P ()
Whereg can be simplified as follows:
t (s/s%)
- (s/s")
s 8*2

Because of the known factorization representatio*ofind the differentiation rule for products,
Z—** can also be simplified:

The complete BwTON iteration step is then:

s(r)

s'(r) = s(r) - Sp=g ﬁ

Ar:=

roi= r—

s(r) and s’(r) can be calculated with ®RNERs scheme. To ensure that exactlyzeros can
be found, the algorithm is implemented with complex numbers. The iteration will be started with
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quite random values, since only a pair of equal values is problematically. When we choose one
approximation-* out of a pair of equal approximation$ = r;, itis r* —rj = 0, ﬁ = oo and
thusAr = 0. This means that the iteration will not changendependent from whetheris a good
approximation or not. Furthermore not all of the initial values will be chosen to be real, otherwise the
iteration will produce real values exclusively and thus can not find non-real zeros.

To find all zeros of a polynomial, the zeros are selected successively{ffpmy, ..., r:_; } todo
an iteration for improving the approximation. This is repeated again and again until the approximated
zeros do not change noticeable anymorés6r)| falls below a given limit.

2.1.6 Example: Bounds for CDF-2,2 wavelet

The CDF-2,2 should serve as an example wavelet for which we want to determine the norm bounds.
Remember, because we are talking about analysis transformation but omitted the tilde for filter nota-
tion, the filtersh andg given here, are not the ones used in the introduction in settion

h:%(—1262—1)

g = 5( -1 2 -1 )
he_%(71671) ho == (1 1)
ge = 3l -1 -1 ) 9o == (1)

Remember, that the the multiplication of polynomials is equal to the convolution of their coeffi-
cients (sectiori.2). The required polynomial products evaluate to:

hehe = (1 —-12 38 —12 1 )
Ege = %( 1 2 1 )
hoho = 15 1 2 1 )
GoGo = ( 1 )
(2.1.1) = P = 5x( 1 8 142 8 1)
P (3 4 1)
p is derived fromp according to figure.4:
1
p(z) = @(2_2 + 8271 142 + 821 + 272
1 1 1
r? = 1(2«*2 + 24 2%) p(z) = 3—2r2 + 1—28(8[1 + 140 + 821)
1 1 140
7”25(2’71“‘2'1) p(z):3—2(r2+4r)+@
~ 1
p(r) = = (r? 4+ 4r + 35)

32

We see that the coefficient of the square termef) =

p is convex, which means that its maximum is at the

pmax

ﬁmax = Pmax =

5 5

= max{p(—1

1

35 (35 + 4r 4 r?) is positive, that is why
bordefs of1].

)op(1)) = max {15

1, -

3

o
1
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Amax = 2 | F|ly = V2
1 =1 1
)\min 5 F ! =
. 70" = 75
Which means that
Vo: lzlly < |Fzlly < V21|
. \/i 2 = 2 — 2

We are also interested in the signals, where these bounds are reached. We follow the solution
sketched in sectiof.1.3
pis maximal forr =1 < z = 1 so we calculaté, ¢, d for this z according to2.1.7):

b = ho(l)he(l) + go(l)ge(l) = -

ISH
m
—
DO | =
[\V]
——
|
NGy
Il
—N—
|
B~ w
>~ w
——

We scale this by—% for simplification and obtain the two signals:

(.., =1, 1, =1, 1, -1, 1, ...) hitsthe upper bound
(oo, 1, 1, 1, 1, 1, 1, ...) hitsthelower bound

2.2 Symmetric wavelets with close norm bounds

We will continue on concentrating on wavelets with two filters.

In section2 we have discussed, why it is important to have close lower and upper norm bounds.
In the case of unitary wavelets the bounds are equal, which is obviously the optimum. Another
common restriction is the request for symmetric wavelets, because they have good visual qualities.
Unfortunately it is not possible to find symmetric unitary wavelets other than the Lazy wavelet, as
shown in sectior?2.1.4 Nevertheless, we will try to construct symmetric wavelets that have bounds
that are as close as possible in a certain sense.

Similar approaches were already explored:

1. In section 8.1.1 ofJ] orthogonal wavelets are constructed which are almost symmetric. Since
symmetry is equivalent to linear phase behaviour, it is tried there to minimize the deviation from
linear phase behaviour of the filters.

2. In section 8.3.5 of{] (also in section 6.C.1 of]]) an example of a symmetric wavelet is given,
that is almost orthogonal. It is based on the Laplacian filter.

We will follow another approach, that utilizes the knowledge of how to determine the norm bounds
for a single wavelet transformation step.
2.2.1 Optimization usingCHEBYSHEV polynomials

To prevent an optimization approach from resulting in the Lazy wavelet we have to set restrictions
additional to the symmetry. A possible choice is to fix the filter length. If we work with the filter

f = (fmaferl’ . 'afnflafn)
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the number of taps of might be less than — m althoughf hasn —m + 1 coefficients.|f| < n—m
meansf,, = 0 or f,, = 0. Thus we must assurg, # 0 and f,, # 0. But since the maximum norm

of p, which is the measurement for close norm bounds, depends continuously on the filter coefficients,
it makes no sense to exclude the set of points wiith= 0 or f,, = 0 which has no interior. That is

the reason why it seems to be better toffixand f,, on some suitable values.

Fixing the outermost coefficients, then searching for wavelets with some inner coefficients that
minimize the norm bound difference will safely exclude the Lazy wavelet. But when constructing
new wavelets, the desired characteristics like interpolating behaviour (see below) additional to close
norm bounds may not be bounded to specific values for the outermost coefficients. In other words,
we are trying to construct wavelets that have naturally close norm bounds (like unitary wavelets), but
it is not sure that wavelets chosen from this family under certain further aspd@se optimal norm
bounds in the sense, that from all wavelets that fulfithe ones we are about to construct here will
have closest possible norm bounds!

We see that the outermost coefficientspofilepend on the outermost coefficients of the longer
filter out of A and g, or on both of them, if the filters have equal size. Thus fixing the outermost
coefficients ofh andg leads to fixing the outermost coefficient f Now, we ask for values of the
other coefficients op that lead to a minimal maximum norm pf Polynomials that have a minimal
global maximum for a fixed leading coefficient are known asE€ysHEV polynomials [, 5, 19,
which are introduced in the context of real numbers, usually. FortunatelyB€sHEV polynomials
have a much simpler representatiorzijrthat can be obtained if we do the reverse argument transfor-
mation (i.e. fromr to z) to the one derived in sectich1.5 The polynomial inz corresponding to the
nth CHEBYSHEV polynomial is

to(z) = 3(z7" +2")

As you can easily see it has exactlynaxima each with a value of 1.

The proof that GIEBYSHEV polynomials are those with minimal global maximum depending on
the leading coefficient is usually done in two steps: First it is shown that all local minima and maxima
have the same magnitude. The second step is to show, that any other polynomial of the same degree
and leading coefficient must have at least the global maximum as the correspondiBy SHEV
polynomial. Refer to, 19 for the detailed proof.

Now we would like to know, if the requirements fpr(e.g. symmetry ang? > gq) allow us to
setp to a function basing on aiEBYSHEV polynomial.

We have to preserve that > gq because it assures thais always real. We can sgto ¢,, scaled
by a real coefficient and add a sufficient big offset. We can also dlldw be rotated on the complex
unit circle. This can be described with a generalized form

tn(p, 2) = 5(uz™" +1z")

|| is the scaling factor angrg (1) the rotation angle. Now let

p(2) = ta(w,2) + |l +1 | e 2)| < (2.2.1)
> 1=gq(z)

The balance of the maxima remains, of course.

It is still not clear if any filter pair exists, that leads to polynomialsf this form, but in the next
section we will derive an example set. Maybe such wavelets got another name in the wavelet literature
already, but here wavelets witliz) = 3 (uz~"+2") + |u|+ 1 will be called GHEBYSHEV wavelets

Without knowing any filter pair that is associated witlp @f the required form, we can already
determine the bounds ofHEBYSHEV wavelets:
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Itis p(z) < 2|u| + 1 with equality e.g. foriu| - 2" = p. =

2119=  [FI2 = Dmax = Pmax + VPhax — 04
= 2[pl+1+/(2[pl+1)* =1

= 2|ul+ 1+ 4 |ul + 4]l
= 2|pl+1+2v/[pl(Jul+1)

= (VITF T+ Vi)

IFlly = Vel +1++/]ul
HF71H2_2 = Amin = Pmax — V p?nax —qq
= ol +1 -2/l T D)

IFYY = Vel + 1=Vl

2.2.2 Special case: Filter length 5 and 3

As an exercise we will constructHEBYSHEV wavelets for a pair of filters with lengths 5 and 3 like
the CDF-2,2 wavelet has. For more generality we will start with complex filter coefficients. Note that
ho andgg are real nevertheless, because of the symmethyeofdg.

The coefficient identifiers are chosen in a way that emphasizes the symmetry, but it does not
reflect the indices of the vector components. The vector component indices are given by the stressed
component which has index zero, as supplied before.

h == ( ho hi ho hi hy )

g = ( 91 9% g1 )
hetz(hghohig)holz(hlhil)
ge = ( g1 g1 ) 9o = ( go )

ehe = ( h2 2hshy h2+ 2hzhy 2Mhohy To )
gege = ( g9 29191 g1 )
hoho = ( 03 2hihy  hi )
9090 = ( 9(2) _ )
hego = ( hago  hogo hago )
hoge ( higi  higi +higi hig )

p andq are computed as defined ia.{.19 and @.1.13:

2p = (h2, 2hoho + h? + g2, h2 + 2h1hy + 2haha + g2 + 20191, 2haho + ha- + G122
(2.2.2)

q = (hago — k191, hogo — (h191 + h1g1), hago — hig1) (2.2.3)
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Determine filter coefficients: Now we identifyp with the appropriate GEBYSHEV polynomial as
defined in £.2.1). We abbreviate the €EBYSHEV polynomialts(u, o) asta(u):

= (1,0,2]|p| +2,0,7) (2.2.4)

Comparison of the coefficients pfin (2.2.2 and €.2.4:

p—2: n= h%
|| = haho (2.2.5)
poi: 0 = 2haho + h3 + ¢
po:  2|pl+2 =R+ 2hihy + 2hoho + g2 + 25101
2 = hZ 4 2hihy + 62 + 20101 (2.2.6)

p1 andps need not to be considered, since all polynomials involved here are symmetric.
Remember that is normalized to 1:

¢ = (0,1,0) (2.2.7)
Comparison of the coefficients gfin (2.2.3 and €.2.7):

q-1: 0= hago — h1g1
Qo : 1 = hogo — (h1g1 + higr) (2.2.8)

Multiply (2.2.8 with 2 and subtract it from2.2.6. We respect thafi, = he = hg € R A g, =
Jo = go € R and obtain:

0 = po—2|ul—2q0
= h§+2hihi + g§ + 2G1g1 — 2hogo + 2h1g1 + 2ha g1
= (ho—90)* +2(h1 + g1)(h1 + g1)

€R,>0 €R,>0
=
= ho—go
0 = hM+aqn
ho = go (2.2.9)
hy = —g (2.2.10)

We establish that @EBYSHEV wavelet filters of the lengths (5,3) have an obvious structure: Ex-
cept of the outermost coefficient, the corresponding coefficients of the filtersl g have the same
or an alternating value.

Using this, the comparison gfs coefficients can be simplified to:

0 = hoho+ h? (2.2.11)
= hi42hihy (2.2.12)
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We note that the same equations could be obtained by simplifying the comparigsrcoéfficients.
Further simplifications can be made if we restfiat, ho, u} C R. Without it there may be more
or even an infinite number of complex solutions.

(2.2.1) = h?
(2219 =1

(2.2.1) = K3
hi =

hy =

= —hohy

= h}+2h}

= h3—2hohs

= h2 —2hghy — 1

= hgi\/h%—l-l

(2.2.13)

= ho+\/h3+1>0
= hy—/h3+1<0

—hohs

++/—hohs
{im thy >0
+v/—hot -hy :hy <0

Now every coefficient is determined. We see that for any givenirgébur CHEBYSHEV-(5,3)

wavelets with real coefficients exist. Thus we constructed a whole family of wavelets which depends

mainly on one parameter.

For hy = 0 we obtain the Lazy wavelet, which is the only orthogonal wavelet in this family.

£l

1745

Vie+ 14/
\/ 3+ 1+ |ho

hoy  :1ha >0
—ho— :hy <0
max{ho+, —ho_}

Vit+1l—y/u
/B2 + 1 — |

—ho— :thy >0
ho+ the <0

min {ho4+, —ho—}

The signal where the norm bounds are touched: What does the signal look like, where norm
bounds are reached? We calculate the eigenvectEde? as explained in sectioB.1.3using the

variablesa, b, ¢, defined in .1.7).
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= (h3,2hohs + g3, h2 + 2haha + 2g1g1, 2hohy + g1% )
b = (h1,h1)* (he, ho,h2) + (g0) * (g1, 91)
= (h1hg, hiha + hiho, hiho + hiha, hihs) + (9og1, 90G1)
= (h1ha, hohi + hiha + gogi, hohi + hihy + gogt, hihs)
¢ = (h},2h1hy + g2, h1")
ho @29 go N hi (2219 -g1 =

a = (h% 2hohy + h3, K2 + 2hahy + 2h1hy, 2hohy + by oy hy)
b = (hih2,hiha, hihy, hihs)
c = (h%7h(2)+2h71h1,h712)
(221) A (2219 =
a = (h3,—h2%1+ 2hghy, —h1  hy)
¢c = (10
a—c = (h% —2h2 2haha, —2h1 ,h2)

For thosez wherep is maximal (if i« # 0 then it is maximal for: =2 = ﬁ (229 %) this results in
2

b = 2hihg +2hihez™t  (hy = ho2?)
= 2hy(h1 + hilzfl)
bb = Ahgho(h2z+hy 2 ' + 2hihy)
a—c = 4hohy —2(h3z + hilzzfl)
(@a—c)2+4bb = 4 ((2;72@ — (B2 + he )2 4 Ahoho(h22 + Ryt + 2/71111))

~ 4 ((2}72@)2 P o L SfTthhThl)

Further simplifications can be done, if we switch back to fgaks again and let = 1.
(a—c)® +4b> = 16(h3 — h3)% 4 64h3h3

16(h3 + hi)?

A—c=1 (a—cj: (a—c)2+4b2) — 2h2 —2h2 +2(h2 + h2)

We obtain two eigenvectors
(4h§,4h1h2)T ~ (hg,h)T  for the upper bound
(—4n3, 4h1h2)T ~ (=hy,he)  forthe lower bound
A lifting step factorization can be made in a general form, too. Please refer to sécifor a
generic factorization of symmetric wavelet filter pairs of the length (5,3).
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2.2.3 CDF-2,2 counterpart

Since the linear interpolation as prediction of the H band seems to be a good choice for many images
and we want to combine this with close norm bounds, we will try to construct a symmetric linear
interpolating GHEBYSHEV wavelet.

Linear interpolation is expressed hy= c-(—1, 2, —1) or equallygy = —2¢; (figure2.5). Thisin
turn is equivalent td, = 2h; because of the simplified structure we observe®if.9 and ¢.2.10.

Figure 2.5: How one can predict the values on the H band (odd indexed sig-
nal values) by linear interpolation in the L band (even indexed signal values) —
Linear interpolation between, ; andz. » for the positiono, 1 means calculat-

iNg 3 (ze,1 + xe2). If the prediction is good it holds, 1 ~ & (z¢1 + 2 2) and

Lol — % (2e,1 + xe,2) Will be quite small. The filter corresponding to this term is
(_%7 17 _%)

(2213= 6ri=1

1
hlz 6
2
h(): g
(2.2.1) = he = — =
L. 2 = 24
ho= /5 (-1 2 42 —1)

9 = o ( -2 4 -2 )
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We immediately get the signals

3
(.. =1, 2, —1, 2, —1, 2, ...) forthe upperbound \g
(.. 2,1, 2 1, 2, 1, ...) forthelowerbound \/g

Precaution: With this construction we obtained wavelet filter pairs that have as close as possible
norm bounds dependent on the outermost coefficierit. ofr his was implicitly done by selecting
CHEBYSHEV polynomials forp. Then we have chosen this coefficient to get linear interpolation by
The more natural question is to ask for all filtgrsvith linear interpolation (i.ec - (—1,2,—1) for
anyc # 0) and to ask for the filter pair of this type which has closest norm bounds. Both approaches
are different, the answers are different as well. Later in se&iBnve will construct wavelet filter
pairs with the same lengths (5,3) which give the answer to the second question.

Practical results achieved with thei€sYSHEV wavelet constructed here are presented in section
3.2.1, where it is compared to weighted variants of the CDF-2,2 wavelet.

2.2.4 Generalization to other filter lengths

Let us explore what GeBYSHEV wavelets look like if extended to other lengths. When deriving
the connections between the coefficients afEBYSHEV wavelet filters, we found the interesting
dependencief2(2.9, (2.2.10 between the coefficients éfandg by using the fact, that 0 is the only
complex number with magnitude 0. Is it possible to extend this trick to other filter lengths?

First we have to make some observations about the filter lengths of reversible (bi-orthogonal)
symmetric wavelets as ir2(1.17.

1 = detP
= hego — hoge
hego—1 = hoge
|hego — 1| = |hogel
hego IS Symmetric= |hego| = |hego — 1| V hego =1

hego = 1 is not very interesting,
we will continue to considek.g, # 1

|hego| = |hoge|
‘he‘+’go| = |h0|+‘ge|
Because of the symmetry it is
20 |he] N 2[lgol A 21]hol A 21]ge] (2.2.14)

We note that there is always one of the filtéts h,, g, go that is strictly longer than the others,
in other words: There can not be two longest filters.

Proof. The proof is done indirectly:
Assumed that two filters have the same length and no other filter is longer, due to theZarity) (
it can only belh.| = |go| Or |ho| = |ge|. Without loss of generality we assuntte.| = |g,|. Because
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of the parity of the filter lengths it ii| # |ho| A |he| # |ge| @and according to our assumption that
he is the longest filter, this meam.| > |ho| A |he| > |ge|- This leads tdhe| + |go| > |ho| + |9el
and is a contradiction to the equality which we have established at the beginning. O

Let f be the longest filter out ofh., h,, Ge, go}. Note that in case. is the longest filter, we will
set f to the mirroredg. in order to better fit into the scheme. Letbe the highest index and the
lowest index off. Since any other filter must be shorter at least by one coefficicamndm do also
bound the indices of all the other filters. The following four cases are possible, the figure shows all
filters at their maximum possible length compared to the longest filter:

m 0 n m 0 n
m/ n/ m/ n/
m// n// m// n//
he (% % % *x x *x x )=f ( O S )
ho (= % ok x k% ) ( * % %k x k% =f
Je ( ko ok k% ok k) ( I S T )
Jo ( x ok K k% ) ( ¥ x x  k % )
m 0 n m 0 n
m/ n’ m/ n’
m// n// m// n//
he ( k% ok k% ) ( k% ok kK )
ho ( * kK % ) (= x ok K % ok )
Je ( k k Kk k x )=f ( ok ok k% )
9o ( ko ok ok ok ) (% % % *x x )=f

We observe that it is always = —m/ andn” =1 — m”.
We repeat the strategy that was successful in seétid2and look at the absolute coefficient of
p first:

J

Apply the definition of conjugated filterd (2.7)

= hejhe + hojhoj + Jejge; + oo
J

! —_ — R— E—
2|pl = fafn + ffm = 2fnfn because of symmetrfj, = f,,
n’ o —n/ n' L —-m
242 =2po|ul = 2|l + Y hejhei+ Y Togdoi+ Y hojhoj+ D Tejbes
j=m’ j=—m’ = j=—n"

TL/

=2p| + Z (@h&j + goﬁjgoﬁj) +

1"
j:m/ j=m

(hojho + Ger—jge~;) (2.2.15)

"
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1=q0= hejgo—j — hojge
j

- Z he,j90,—j = Z ho.jge,~j (2.2.16)
j=m/ j=m

Now we can build a complete square frgghandq:

0 = 2po—2|pl— (G + q)
n/ o TLN o
= Z (he’j - goz_j)(hevj - goa_j) + Z (hozj + gea_j)(ho)j + gev_j)
g=m’ €R,>0 j=m’ €R,>0

Vj S {m’, R ,n/} :0 = (@— go,_j)(h&j — go,_j)

hej = Go—j = Goj
vie{m”,....n"}:0 = (hoj+ ge—j)(hoj + Te—5)
hoj = —Gej = —0ej

E.qg. in the first case where the longest filtefis- h. that means that

he(2) = go(2) +hem - 2™ + hey - 2" (2.2.17)
ho(2) = —ge(2) (2.2.18)
Although it ism = —n here, the different variable names were left for easier carrying the results to

the remaining cases, which are similar.

We see that4.2.17 and @.2.1§ form a necessary condition for a wavelet to be RE@YSHEV
wavelet.

If we carefully think over the insertion and replacement steps that were made in se&ign
we note that after finding out the relatiors4.9, (2.2.10, the coefficient comparisons pfandq
coincided. The equation®..9, (2.2.10 could be carried to other lengths — is this true for this
observation, too?

The answer is yes, and for the cabe- h. we can show exemplarily, that i2(2.17 and ¢.2.19
are true then the conditions

1. p(z) = t(p, 2) + || + L with g1 = 2p, = B2,
2. q(2) =1

are equivalent.
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2 (t(p,2) + [l +1) = o S
W) = Bel2hel2)  Rolho(2) + 5l (2) + 90 ZN0ol2)
(2'é18 he(z)he(z) + go(z)go(z) - 2h0(z)ge(z)
(2.2.19

Go(2)(heym - 2™ + hep - 2") +
9o(2) (hean - 27" + he - 27") +
290(2)go(2) — 2ho(2)ge(z) | =2 (t(ps 2) + 1))

—~

Note that because of the symmetryrgfit is

2 =0o(2)(hem - 2™ + hep - 2™)+
QO(Z)(he,m 27+ m 27"+
290(2)90(2) — 2ho(2)ge(2)

applygo(z) = go(z) A he,m 2T = he,n AN E 2T =hem - 2™

)

= 290(2)(h6,m 2"+ hep - 2") + 290(2)2 — 2ho(2)ge(2)
= Q(he z)go(z) - ho(z)ge(z))

Finally we obtain, that if the wavelet filters and g share the same coefficients according to
(2.2.17 and @.2.19, we have to preserve only thatg, — hog. = ¢ = 1 and it follows immediately,
thatp has our special form of alEBYSHEV polynomialt(u, z) + |u| + 1.

2.3 Linear interpolation

In section2.2.3we have tried to find (5,3)-wavelets with both linear interpolation and close norm
bounds. The BEBYSHEV wavelets are a general approach to combine filter symmetry with close
norm bounds. So, was the selection of linear interpolating wavelets out of the clasEBff SHEV
wavelets optimal with respect to the bounds? We will investigate what the closest bounds with linear
interpolating (5,3)-wavelets with real coefficients possibly are.

To be sure that we construct invertible wavelets, we will construct the lifting factorization of the
requested wavelet in the next paragraph. We will see that the lifting steps depend only on two pa-
rameters if we restrict to a linear interpolating filterin the subsequent paragraph we will determine
values for these parameters that make the norm bounds of the wavelet as close as possible.
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General lifting factorization: Fortunately the lifting factorization (seé][and figure3.3) of any
invertible symmetric (5,3)-wavelet can be made with the same steps, differing only in the choice of

two parameters.
From the invertibility of the wavelet follows:

1=gq
(Oa 1a O) = hego - hoge
= (h2go — h191, hogo — (h1g1 + h191), hago — hi1g1)

comparison of the components results in
0 = hago — high (2.3.1)
1 = hogo — (h1g1 + hag1) (2.3.2)

The factorization starts with the last lifting step. lIts lifting filteis chosen in a way that the
outermost coefficients df vanish if we reverse the lifting step. Let= (ZT’ %) then we can reduce
h by g with help oft(c?) and obtain the filters

h ho
h/ = h — 72707:2 g
g1 g1
hago h2gi  h2g1 hago )

- (h27h’17h07h717h72)_ <h27 ) + — y T — 7h2
91 g1 g1 91

1
= (07 —(h1g91 — h2go),
g1

hogo — (h1g1 + h1g71) hi  hy _ (h1  he
+ gl ¢ - - + gl * - — T >
go go g1

1 -
—(h1g1 — h290), 0)

g1
h — (h h1g1
CEEIN 0go — (h1g1 + 1511)’0’0
go
1
¢33 (0,0,,0,0>
go
/
g = g

Now i’ andg’ are the filters that are present before the lifting steppapplied. Since’ is still not a
constant in general, we need yet another lifting step with the filter(gog1, 9091):

h// - h/

v N\

9" = g —(9091,0,9091)h
= (glag(]:ﬁ) - (917075)
= (07.907())

We obtainedh” andg” which are constants that are reciprocal to each other. With four additional
lifting steps they could be factorized into the Lazy wavelét & 1, ¢ = 1) according to {].
The full lifting sequence is:



42 CHAPTER 2. TRANSFORMATION NORM BOUNDS

1. Weighting the L band withqlG and the H band witlg

2. Lifting from L band to H band with lifting filters = (gog1, gog1)

3. Lifting from H band to L band with lifting filtert = (%, %)

Determine the parameters: The previous thought has shown, that each of the two lifting filters has
the form(z, ) if working with real values. We start at the filters

1
h" =(0,0,=,0,0)
a

9"=  (0,a,0)
and the first lifting filter is
1 1
_(_—.2 1.2
5= (=0 —5a%)

which does the linear interpolation, because the resulting filter

g/ — gl/+$ 02) . h//
a a
- (_57 7_5)
1 1
— (==.1.—Z=
a ( 2’ Y 2)
has the required form.
The second lifting filter is set to
t = (b,b)

with still unknownb.
The filter pair built from these lifting steps is:

b —

) ho = ( ab ab )
)905:( a)

o= (1o
Je ::( -

NIQ
Q
EAET

Now, our aim can be expressed by the determination of

argmin max p(r)
a,b r

It is easy to predict that the coefficient of the square term (@kefined in .1.19 and €.1.129) is
%(ab)Q. Thusp is convex again, its maximum is eitherrat= —1 or » = 1 and the maximum op is
atz = —1 or z = 1 respectively.

maxp(r) = max{p(=1),p(1)}
To process both cases together, we will use the pair notétigr}. Each operation applies to both

members of the tuple. It is not really a set, because the order is importan{aEbg.> {c, d} means
a>c A b>dand arelation between eithemandd or b andc is not given.
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2{p(-1),p(1)} 2p({-1,1})

= ({1, —1}-ab+ 2 — ab)2 + ({0,2} - ab)? + ({0, 1} - a)* + a®

1 2
= ({0, —2}-ab+ a) + ({0,2} - ab)? + {1,2} - a®
= {08} (@) + oy + {0, —4} b+ (1,2}
= {01} (8(a)* 4D+ a®) + o5 +a”

1\? 1 1
i o o 2 - 2
{0,1} (2 <2ab 2a> 52 +a ) + 2 +a

equality forb =

4a?

1 1
> 1}. 2_ - 2 —
> {0,1} <a 50 >+a +3

1 1
2 2
— — 2@ -
{ a?’ 2a? }

This implies

1 1
. 2 2
Vb: 2max{p(—1),p(1)} > max{a + —a2,2a + 2&2}

1 1
mbin (2 max {p(_1)7p<1)}) > max {CL2 + ?, 2(12 + W}

Because for given, p(—1) andp(1) are minimal for the sam& we can exchangein andmax:

mjn (2ma (1), p(1)}) = 2max {win p(~1), min (1)}
1 1
:max{a2 + ¥,2a2 + M}
Thus we will set

1

for further considerations gf(—1) andp(1). What remains is the calculation of

argmin max {p(=1),p(1)}

We note that botlp(—1) = a®+ % and2p(1) = 2a? + 5.5 are convex imi, somax 2p({—1,1})
is, too. That is why there is only one minimum and we guess, that it is reached when both terms are
equal.
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2 _
2(1—{—?‘!2—(1"1'*2

1
2—7
“T o2

1

o = -

2
2

Because the functio?(p(1) —p(—1)) = a® — # is monotonically increasing ia, we can verify
easily, that

p(=1) <p(l) :a> f/g
p(=1)>p(l) :a< </g
In other words

1 ca> 4L
max {p(—1),p(1)y = {747 i/}

B p(—1) :a<{‘/g

That is why the left and right hand derivativesmafix 2p({—1, 1}) ata = (*/g are

2
2pq—(—1) = 2a — —
pa( ) a CL3
2a* — 2 41
= <7
a3 @ <3
<0
1
2pat(1) = 4a — s
4a* —1 A1
= >,
a3 a >3
>0

N 2

2

2.3.3 > b:[
3

NG,
p 4

3 18 3+1
W= VRS 1=2E0
)‘max/mln 4\/> 16 4 f
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)\max:\/i ||F||2:<1/§
1 -1 1
)\minzi F 1 = —
- 170 = 5
4
4
2
ho= \8[(—1,2,6,2,—1)
)
g - 2\4y§ y“

We see that the result is a CDF-2,2 wavelet weighted/y Refer to sectior8.2.1for further
considerations of weighting.
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Chapter 3

Construction of image specific wavelets

3.1 Minimization of entropy

Preprocessing images with wavelet transforms is a good choice to achieve better compression rates.
The goal of transforming an image is to gain only a few values of significance, so that good compres-
sion is simply done by throwing away the less significant values. Further compression can be achieved
by quantifying the transformed values. Care must be taken that modifying wavelet coefficients does
not damage the original image visually.

A technique that saves space by quantifying values and suppressing low values and which pays
attention to the special structure of wavelet transformed images (fiylirés the Embedded Zero
Tree method]4, 15]. In this encoding algorithm, the wavelet transformed image is treated as a multi-
rooted directed tree. Each node of the tree corresponds to a pixel of the multi-scale representation.
The tree is defined in such a way that each netias either no offspring or four offspring which are
‘refinements’ of node.

The EZT encoding is an iterative procedure: In tfth iteration, it starts by encoding the roots
of the tree, i.e., the tree nodes in which normally most of a wavelet transformed image’s energy is
concentrated. Then for each pixel of this level, the corresponding subtree is considered. If all the
nodes of the subtree are insignificant with respect tojthehresholdZ’;, then the offspring of the
pixel are not encoded and the subtree is pruned away. If the subtree is not such a zerotree with respect
to 7}, the offspring are encoded and the procedure is recursively applied to the offspring. Here, a pixel
of the wavelet transformed image is calledignificant with respect to a threshald if its magnitude
is smaller tharil;. A subtree is callederotree with respect 1@}, if all of its nodes are insignificant
with respect tdl;. [11]

Wavelet transformation is designed to produce as low as possible transformed values on the high
frequency bands HL, LH, HH, if the images are natural, which means that the assumption “neigh-
boured pixels are similar” holds in general. The lower the values on these bands are, the more often
can theEZT encoder make use of the efficient coding of a complete sub-tree as zerotree. If small
values can be obtained on a local image part over many levels, a deep sub-tree can be encoded as ze-
rotree. If the values of the high frequency bands can be made small in general, the zerotree encoding
can be applied even for small thresholds

In general, standard wavelets are used, which are constructed under some theoretical aspects and
which have proven on much example images to satisfy the criterion of high frequency bands with low
amplitude. Newer approaches (as sketched i [select wavelet filters which provides the best result
for a specific image or part of it, from a discrete set of standard wavelets. Another possible extension

a7
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original

Figure 3.1: Structure of wavelet transformed images — Each transformed level
consists of three high frequency bands HL (right top corner), LH (left bottom),
HH (right bottom) for the scale corresponding to the level. The HL bands empha-
size vertical edges, the LH bands emphasize horizontal edges. The very small part
in the left top corner is a scaled down version of the original image. The original
image is transformed over 6 levels with the CDF-2,2 wavelet. Values with small
magnitude are white, values with big magnitude (independent from the sign) are
drawn black.

is to further divide and transform the H bands of some transformation step results. This is associated
with the concept ofvavelet packet basemdbest bases selectioRefer to 3, 9, 8] for details.

In the further considerations, we want to keep the simple scheme of dividing the input signal into
high and low frequency bands, but we will drop the restriction to predefined wavelets. This should
make it possible to react on image characteristics like intensive noise, which can not be handled
by most standard wavelets. Further on, the adaptive creation of the wavelet would save an explicit
algorithmic distinction, e.g. between smooth and noisy images. If multiple wavelets are used, each
for a part of the image, more local features e.g. edges or local patterns of an image can be respected.
But the more wavelets have to be created, the more wavelet coefficients have to be stored in the
compressed image file, which may impair the enhancement that was achieved by making the wavelets
adaptive to the image.

3.1.1 Goal of optimization

As stated above, on natural images, standard wavelets reduce the values on the H band. This effect
is utilized for compression. With adaptively created wavelets we want to optimize this reduction. So
first of all, we have to select a measurement for a total amount of all signal values. The definition
of vector norms fits best to our intuitive concept of total amounts. Some of the vector norms as
the sum norm, the maximum norm and thedtipean norm (which is equivalent to tHeSNR
measurement for optimization, see sect®are explored quite well. ThelELiDean norm weights

big vector components more than small components. This differs from the sum norm which weights
all component values equally. But th&yELIDean norm does not over-emphasize big components in
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opposition to the maximum norm, where only one big component is sufficient to increase the norm to
the component’s value.

Thus the ExcLIDean norm warrants a good balance and furthermore it allows the application of
straightforward optimization algorithms sometimes.

For simplicity we will start with one-dimensional signals. Then, thecEibean norm is defined
as

n—1
>
i=0
At first, we try to not to restrict the norm reduction to the H bands for more generalityiLb¢
the matrix that describes the whole wavelet transform, then we can express this goal as finding a
where

[y =

|Wz||, — minimum!

with the requirement thdd’—! must exist.

But the requirement of the reversibility 0¥ (equivalent tovz # 0 : |[Wz|, > 0) is not
enough. Sincé|Wz||, depends continuously on a varying wavelet transformakionthere is no
minimum if we exclude||Wz|, = 0, only. To avoid this problem, we could e.g. claim wavelet
transformations with balanced norms of the transformations in both directjoii§, = || W',

Note that this may contradict to a normalization of the polyphase determinant to 1 (s2dtign
As the normalization of the polyphase determinant, the normalization of the norms should also have
good numerical properties, because the optimization can not lead to wavelet transformations with
low (good) bounds for the one direction which has to be paid with high (bad) bounds for the reverse
transformation. The balancing results in a normalization which can be assured by scaling. For every
reversiblelV a scaled

_ 1w,

W=, 12y
W1,

would be such a balanced wavelet transformation. Thus a better optimization approach would be
|W'z||,, — minimum!

with the requirement thal’||, = ||W’~!||, (which includes the existence &f'~!).

How can we do this optimization, respecting that the linear transformHtigma wavelet transfor-
mation and is normalized 0V ||, = ||W |, ? The generic representation of any finite dimensional
linear operation is the matrix representation. But the whole wavelet transformation written as a ma-
trix has a complex structure. The matrix coefficients depend non-linearly on the filter coefficients,
and it is difficult to retrieve the filter coefficients from the matrix representation. This is even more
complicated, if different filters on different transformation levels are allowed. Also, the restriction
to minimize all H bands only would not simplify the problem. Thus it should be easier to optimize
within one transformation step.

3.1.2 The optimization scheme

Keep in mind that we have to construct invertible wavelets, which means that the restriction for the
filter pair h, g must be respected, i.e. the polyphase matrix has to be regular, which is equal to a
monomial determinant of the polyphase matrix. Additionally, we will require the determinant to be
normalized to the constant 1 (refer to sectibf.?). But with this normalization it makes no longer
sense to normalize the transformation norms. So we will drop the condition of balanced matrix norms.
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Under the restriction of the normalized polyphase determinant we have to minimize the norm
of the transformed signal after one transformation step. Since the polyphase determinant depends
non-linearly on the filter coefficients, the problem is still too complex. We also do not know how
modifying the L band (the one which is transformed in the next step again) can influence subsequent
transformation steps. So we will content ourselves to minimizing the norm of the H band, leaving the
L band unchanged and rely on the reduction of the norm of the L band in subsequent transformation
steps.

The greatest common divisor of the filtejs g, (those that forny) is always a divisor of the
polyphase determinant. Thysandg, must be relatively prime, otherwise the polyphase determinant
can not be a monomial. This restriction complicates the optimization still too much. At this point the
lifting scheme ] comes to a rescue, because wavelet transformations constructed with it are always
reversible. Thus we will try to design lifting steps from L bandto H bandz, to reduce the energy
on the H band as depicted in figuse2.

Lifting with s as lifting filter has the following effect, depending on the lift direction:

= Tyt Te ks \ L — H lifting

8 8
o~ o~

Te+ X * S \ H — L lifting
« L U 0O 0O O

Nl

» [ 00O O

e LTI TTT]

Figure 3.2: ldea of lifting — How pixels in one band predict the ones in the other

Multiple lifting steps are applied alternating between the two bands, because two following lifting
steps in the same direction can be merged to one. If multiple lifting steps are appliedzgitner,
replacesc. andzx,, respectively, as input for the succeeding step. FiGusenay demonstrate that.

The big advantage of the lifting method is, that we automatically receive invertible transformations
as results. We can even use non-linear lift functions, anyhow we can be sure that we can do a reverse
transformation.

In the context of reducing the norm of the H band we can interpret the lifting step as predicting
the H bandz, signal by filtering the L band.. The filters is optimal if it filters the L bandr. and
produces the prediction. := s * z, that is as similar as possible to the H band In other words
)|l = ||zo — s * z¢||, Should be small.

|8 * ze — o], — Minimum!
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Figure 3.3: The lifting scheme in one dimension — Here for example with two
stepss andt and the corresponding back transformation on the right side

3.1.3 Least mean square optimization

Now, let us express our strategy in terms of Linear Algebra. For simpler notation we witl aséhe
identifier for the source signaj, = s * x for the predicting signal derived from it andfor the signal
to be predicted. Thus itis = z.,y = y., u = z,, and the optimization goal is expressed by

||s * & — ull, — minimum!

Let S be the transformation matrix corresponding to the fister (s,,, Sm+1, -, Sn—1,5n), m <
0,n > 0, that means$'z = s * x, and let/ be the length of the H band. Théhcan be written as

Sn  Sn—1 Sp—2 - Sm 0 0 <o 0 0 0
0 Sn Sn—1 Sm+1  Sm 0 o 0 0 0
0 0 Sn ct Sm42  Sm4l  Sm o 0 0 0
0 0 0 Sn Sn—1 Spn—2 *++  Sm 0 0
0 0 0 0 Sn Sp—1 - Sm4+1  Sm 0
0 0 0 0 0 Sn s Sm42  Sm41  Sm

whereS € RbsI

Yo Tm
1 Im+1
Y2 Tm+2
=9. :
Yi—-3 Li+n-3
Yi—2 Ti4n—2
Yi—1 Li+n-1

If it is inconvenient that the filtered signal is shorter than the input, the first and lastn
columns ofS could be cut off, which is equivalent to filling the unknown input valugs ..., z_1
andxy,...,x;1,—1 With zeros. Finding a filter which minimizes the norm of- v, means find-
ing the corresponding filter matrix, which is not a very clever approach. But we remember that the
convolution is commutative, so it is the same if we ask fos avhere

||z * s — ull, — minimum!
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That means we expressas a matrixX € R:IsI+1 ands as a vector.

Yo Sm
U1 Sm+1
Y2 Sm+2
Yi—-3 Sn—2
Yi—2 Sn—1
Yi—-1 Sp,
X = (%jr)j=0..1-1k=m...n
Tj—k 0<j—k<l
Lk = .
0 : otherwise
T—m T—m—-1 T—m-2 =" x1 xo 0 0 0 0
Tom+l T—m T_pm—1 - T2 x1 ts) 0 0 0
T—m+2 T—m+1 T—m cee T3 T2 T1 o 0 0 0
0 0 0 v Tl_2 X-3 Ti—4 " Tl-n-1 Tl-n-2 Tl-n-3
0 0 0 s X1 Tyj_9 Xj_3 -+ Ti_n Tleno1 Tl—n_2
0 0 0 e 0 Ti-1 Ti—2 ° Ti—ntl Ti-n Tj—p—1

Finally we obtain a standard linear least mean square problem in
| X's — ull, — minimum!

which is solvable with several algorithms, such as normal equations, the QR decomposition method,
the singular value decomposition &f and the pseudo inverse &f [19].
In our software package we follow the simple approach of normal equations:

Smin = argmin || Xs —ull, < XX s = X u
S

Assumed thaiX” X is regular the linear equation system on the right hand can be solved with a
CHOLESKY decomposition. Tests with long filters (20 taps and more) have shown that the implemen-
tation of the G1OoLESKY decomposition inTNT [10] may fail sometimes, so that the iteratiwenju-
gate gradienmethod [L9] is implemented in our software package, too, which replacesSLESsSKY’s
method now. Unfortunately it is not known, how tbenjugate gradieniteration reacts on an almost
singular matrixX” X, which can occur when a filteris requested, that has more coefficients than
necessary for exact prediction of a given signal structure.

Table 3.1 presents the compression ratios which will be achieved with the least mean square
prediction. Note that the transformation is done with a predicting step only, whereas an update step is
left. We see that simple predicting may even damage the compression effect compared to a standard
wavelet. It has to be explored what the problem is. Indeed the energy of the H band is decreased by
longer prediction filters. It is well below the decrease of energy from the original signal to the one
with the subtracted predicted signal. The results show that the decrease of energy in the H band does
not necessarily lead to better pack rates.

The exception is thkena noisy  image which consists of a mixture lgha with a synthetical
pattern like that of a coarse printing. One can see that a certain filter length is needed to adapt the
pattern. But synthetical patterns are also dangerous, because the Xiai¥ixf the normal equation
system may become singular.
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image H CDF 2,2\ 2 \ 4 \ 10 \ 50

baboon 6.25 | 6.34| 6.32| 6.30| 6.30
goldhill 5.06 |5.12|5.11|5.11|5.11
lena noisy 8.92 |853|8.63|5.56|5.47
lena 456 | 4.62| 4.67| 4.66| 4.67
mountain 738 | 752|745|7.44| 7.44
parrot 444 | 472|4.65|4.65| 4.74
pepper 4.97 5.22|5.21| 5.20| 5.18
sarpripuls 721 | 7.24|7.22|7.21| 7.21

Table 3.1: Least mean square prediction — How does increasing the size of the
predictor influence the pack rate? CDF-2,2 is compared to wavelets which consist
of a single prediction lifting step. The predictor is computed for every image and
for every transformation level and direction (horizontal, vertical). The predictors
have the sizes 2, 4, 10, 50, respectively. Transformation is done over 6 levels.
Thereafter every image is lossless compressed Bt method. The bits per
pixel rate achieved is presented here.

3.1.4 Special cases

The described optimization scheme can be modified to better fit particular applications. Every mod-
ification to the scheme that leaves the linear characteristic unchanged can be handled with the linear
least mean square optimization algorithm.

Treatment of undefined input values: As mentioned abové+ |s| input values are necessary to

get! output values, when using a filter with| 4 1 coefficients. But normally you expect the same
number of input and output values. The solution used above was to fill extra input values with zero.
But this introduces discontinuities into the input signal. Instead, values can be reused at the start and
the end in reversed order. This results in the matrix:

X = (Zjk)j=0..01-1,k=m..n
T(j—k) mod I :0<(j—k)mod 2l <1
ik =
J .

T(k—j—1)mod - Otherwise
T—m T—m-—1 x2 1 xo Zo 1 T—m—-2 T—m-—1
T—m+1 T—m o x3 €2 €1 xo o T T—m-—3 T—m—2
T—m+2 T—m+1 ce T4 3 xr2 x1 o t LT—m—4 T—m—3
Ll—n+2 Ll—n+3 o Ty—1 Ty—2 Zy—3 Ty—4 Zy—5 e Ll—n—2 Ll—n—3
Tl—n+1 Tl—n+2 e Ti—1 Ty—1 Tp—2 ;-3 Ti—4 e Tl—n—1 Tl—n—2
Zl—n Tl—n41 Zy—2 Zp—1 Zp—1 Zy—2 xy—3 o Tl—n Tl—n—1

The assumption of periodic input signal can be made to legitimate tha&RFER analysis. Then
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X looks like this:

X = (%jk)j=0..0-1k=m..n

Tjk = L(j—k) mod I

T—m LT—m—-1 T—m-2 = 1 Z0 Tl—1 Zi—n+2 Ti—n+1 Ti—n

T—m+1 T—m T—m-1 - T2 T xo o Tl—n43  Ti—n+2 Ll-n+l
T—-m+2 T—m+1 T—m t 3 2 1 to ZTi—n+4 Ti—n+3 Ti—n+2
T—m T—m—4 T—m—5 o T2 Zy—3 Tj—4q o Tl—n—1 Tj—n—2 T]—n—3
T—m—-2 LT—m-3 T—m—-4 =" Zy—1 Tj—-2 Tj-3 Ti—n Ll—n—1 L]j—n-—2
T—m—1 T—m-—2 L—m-—3 xo Ti—1 Ty—2 Tl—n+1 Tl—n Tl—n—1

Equal coefficients: The coefficients of the filter to be designed may depend on each other. The sim-
plest dependency is that some coefficients have to be equal. You can mottifyenerate symmetric
filters automatically. Say, two filter coefficients ands;, shall be equal, then the result is the same
if you removes;, from the vectors and add the&th column to thejth one, removing théth column
from X hereafter.

For image processing it might be desirable to avoid visible distortions caused by asymmetric
wavelet filters. It is no problem to restrict the optimization to symmetric filters-(—m):

VjeA{0,...,n}:s;=5_

You only need to determine the coefficients. . ., s,. Note that the following definition oX con-
tains matrix elements with indices out@f. ..,/ — 1. Fill them as you like or follow the description
of the previous section.

Yo
U1 S0
Y2 S1
. —X.
Yi—3 Sn—1
Yi—2 Sn
Yi—1
X = (Zjk)j=0..1-1,k=0..n
wj k=0
Tik = .
! Ti g+ xiip :otherwise
j—k Jjt+k -
zo T_1+ 21 T2 + T2 T_n + Tn
T Ty + T2 T_1+ T3 Tntl + Tntl
z2 T + T3 To + T4 s T_pt2 + Tnit2
Ti—3 XTj—4a+Ti—2 Ti—5+Ti—1 - Tl—n-3+Ti4n-3
Ti—2 Xj—3 T Ti—1 Ti—4 + ) t Xep—2 T Ti4n-—2
Tyi—1 Ti—2 + T T_3+Tir1 o Xj—p—1t Tirn_1

Table3.2 shows how the compression rates change when restricting the prediction filters to sym-
metric coefficients. It was to expect that the visual improvement must be paid with less compression
efficiency, but the results show that the compression rates are comparable to those of the unrestricted
predictors (table.1).
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image CDF 2,2 2 4 10
asym| sym | asym| sym | asym| sym
baboon 6.25 6.34 | 6.34| 6.32 | 6.32| 6.30 | 6.31
goldhill 5.06 5.12 | 5.11| 5.11 | 5.11| 5.11 | 5.13
lena noisy 8.92 8.53 | 8.53| 8.63 | 8.62| 5,56 | 5.58
lena 4.56 462 | 4.62| 4.67 | 4.66| 4.66 | 4.66
mountain 7.38 752 | 752| 745 | 7.46| 7.44 | 7.44
parrot 4.44 472 | 4.72| 465 | 4.65| 4.65 | 4.63
pepper 497 5.22 |1 5.20| 5.21 | 519| 5.20 | 5.18
sarpripuls 7.21 724 | 724 722 |7.22| 7.21 | 7.21

Table 3.2: Least mean square prediction with symmetric predictors — It is the
same situation as in tablg1, except that now symmetric predictor filters are
computed and applied additionally. They are compared to the asymmetric predic-
tors from above.

3.1.5 Lifting variants

Our approach is not limited to one dimensional (1D) lifting. Some extensions can be made easily. The
idea is always the same: Filtering data means calculating some linear combinations of input values
and filter coefficients. So look which input values, are included to calculate one output valye

and write them as thgth row into X. Then solveX” X s = X7« for s.

2D lifting:  There are several possibilities to extend the optimization scheme to two dimensions. The
restriction to pictures that have only one component per pixel, e.g. grey scale pictures, is retained.

The easiest extension emerges if the image is considered as a set of columns or rows and operations
are performed on the columns and rows like on one dimensional signals. This results in separable
wavelets and does not give us more choices for lifting scheme generalizations. But it can still be
chosen how many filters shall be constructed. One per line, one per image or one for some line
groups, for groups of equal or different sizes. Since optimization is based on the result of the previous
transformation step, the order whether you start on rows or on columns will influence the result as
well.

The other possibility to move towards 2D is to think about generalized lifting schemes. We re-
member that the approach in one dimension was to predict values of the odd band using values of the
even band. On images we have not only two bands but four sub-pictures. After sorting the pixels, odd
to the right/bottom, even to the left/top, the right bottom picture now plays the role of the H band. It
is possible to design filters that predict the values of the right bottom picture HH by filtering values
from the other three pictures. The case of small filters can be better illustrated on the original image
(refer to figure3.4). Every pixel of the HH part:; ,, with j = £ =1 mod 2 is predicted with

Yik = Z Sj—a,k—b " Lab
a=0 mod 2 V
b=0 mod 2
E.g. with3 x 3 filters you predict the value of one pixel by a linear combination of the pixels in its
8-neighbourhood.
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In a second step you design filters to predict the right top picture LH with the LL band, i.e. for all
j=1 mod 2,k =0 mod 2you calculate

Yjk = Z Sj—a,k—b " La,b
abEEOU rﬁ?oddQQ "
and analogous, you predict the left bottom picture HL with the LL part. This method makes sure that
the result is independent of the optimization order. This differs from the adaptive lifting step creation
for separable wavelets!

Pixels which predict the ones in the Pixels which predict the ones in the
H H part L H part

Figure 3.4: Pixel prediction in two dimensions — Boxes corresponds to LL band
pixels, dashed boxes corresponds to HH band pixels, rounded boxes corresponds
to either LH or HL band pixels.

The ideas of 2D liftingifiterpolationfrom sub-sampled imaggand least mean square optimiza-
tion (BURGs algorithm) are always covered by/] separately. Different to what we consider here,
updating lifting steps are left and the transformed data is compressed withMAN, arithmetical
coding and [EMPEL-ZIV-WELSH (LZW) compression instead &ZT. The least mean square predic-
tion which is performed line by line and from left to right in every row with appendedr1AN or
arithmetical coding achieved the best results in that test.

Non-linear lifting:  According to table3.1 and table3.2 using bigger filters does not warrant to
improve the results. So it is of interest if one can get better results by extracting more information
from pixels which lay close around the one that shall be predicted. For doing the optimization it
iS not necessary to restrict to linear dependencies from the input values. As shown irBflgiire

is also possible to use linear combinations of terms which depend non-linearly on the input values.
E.g. it would be a special case if one band would be processed in a non-linear way into a temporary
buffer and then used as the source for a filter based lifting step. As example for non-linear lifting
we consider additional terms like,x,,.1 (which has the wrong physical unit, what means that its
coefficient depends on the amplitude of input signal) ar,z,,;1 (which makes trouble when the
radicand is hegative and it is not clear how to choose the sign of the root). Such non-linear terms miss
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some nice characteristics: They depend on the offset of input data, which means you can not reuse
coefficients on the same data if their offset is varying. Given, an image has a characteristic which is
described very good by such terms but has a slightly changing offset, using the additional term will
not lead to an advantage.

Assuming thatz,z,,+1 < 0 indicates a zero betweenandn + 1, we quickly write a function
which works around the root problems and we can build a Kew

c(u,v) = {sgn(u) Vuv cuv >=0

0 : otherwise

X = (ifjk)jzo...l—l,k:o...z
x; k=0
Tjk =\ c(zj, 2j1) k=1
.%'j_H k=2
zo c(zo,x1) T1
r1 c(z1, 2) T2
To c(z2,x3) T3

3 c(w_3,T_2) T2
o c(r_o, 1) w11
T—1  c(®—1,71) x

N
w» [ [ ) [0 O]

Figure 3.5: Non-linear prediction of the other band — The non-linear magping
is inserted before the filter.

3.2 Improved norm bounds

Since we are not working with orthogonal/unitary wavelets, it is not exactly known how big the
change of the image is if some values of the transformed image are changed. Such changes happen if
the transformed image is compressed in a lossy manner. In the following we will spend our interest on
reducing this uncertainty (which can be expressed by tight lower and upper transformation bounds).
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At first glance this goal seems to be contrary to the good pack rates we want to achieve, since
the latter requires small values in the transformed image in contrast to the original image. But since
the transformation is designed to be exactly reversible, it is natural that many small values require a
few very big values somewhere in the transformed image. This must be similar in the behaviour of
wavelets, which have close norm bounds, too.

We will discuss two approaches to design lifting steps that can be performed after other lifting
steps, e.g. energy minimizing predictor lifting steps, to make the norm bounds closer. On the one
hand, splitting the prediction and the norm narrowing step leads to sub-optimal results, on the other
hand, when optimizing them together, it is not clear how to balance both optimization criteria.

One might ask, why we determine general norm bounds for wavelets we constructed just for a
specific image. E.g., if you construct a predictor for a given image, in the worst case the H band is not
touched and in the best case it vanishes, which means that the norm of the image after applying the

predictor is betweetiz, ||, andy/||z.[|3 + ||z,]|5. Why general bounds if the transformation is only
used for this signal?

The reason is the change of the transformed image caused by lossy compression, again. When
transforming back we start on an image that differs more or less from the one we obtained by the
analysis transformation. That is why we have to deal with the signal independent operator norms.

3.2.1 Weighted filters

One possible way to improve the bounds is to weight the filters for both channels: One filter is ampli-
fied and the other must be weakened. This keeps the balance expressed by the polyphase determinant
as given in £.1.6 which was fixed to 1.

That is what we have to solve:

Qmin = argmin max p(z)
a€R\{0} ‘;E_Cl

1
aYe a0

pa is thep polynomial as in2.1.19 corresponding to the weighted polyphase ma(r%(he aho)

which can be shortly expressed as:

Do = a?- %(Ehe + hoho) + 2 %(@ge + 909o)
—_— —_—
= =u

Weighting problem is convex: We are now going to show that this optimization problem is convex,
which yields to some nice features. E.g. any local minimum of a convex problem is the global
minimum, too, and the set of local minima forms an interval (maybe contairihg

Sincehe(z)he(z) > 0,ho(2)ho(z) > 0,... thewv, u as defined have only non-negative real
values on the complex unit circle. We know that the following defines a norm in the space of such
polynomials:

[v]loo = max|v(z)] | w(2) >0
ot

- )
|z|=1
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We will show, that

1
Bv+ —=u
B
is convex ing € R, thusf has exactly one minimum on an interval, which will often consist of one
point only. Calling one of the minimum argumerttg;,, we obtainamin = £+v/Bmin-
Forallt € [0, 1], o, 51 € Ry itis true that

16) = |

[e.o]

Jf(tBo + (1 —1t)B1) = H(tﬂo + (I =t)B1)v+ MU '
(32 (t 1-—1¢ 1 1—1t 1
v>0 A u>0 H ﬂOJr( B )ﬁl)v+(ﬂo ( a )ﬁl> 00
< t-‘ﬂov+ﬁl()uoo+(1—t)~ Blv+511uoo

< t-f(Bo)+ (1 —=1t)- f(B)

which is the convexity condition. We have used this auxiliary calculation:

0 < t(1—t)(Fo— )
0 < t(t—1)-26081 +t(1—t) (62 + 6D
0 < (B+(E—-1)°>=1)-Fob +t(1 — )5 + 57) | BB
Bopr < (tBo+ (1 —1)B1)(t6 + (1 —1)5)
| : (BoBr)(tBo + (1 —t)51)
: < Lyt (3.2.1)

tho+(1—-t)81 ~ %Jr B

We can also predict some limits of the upper bound minimization by weighting. How small can
the upper bound become in the best case?

1
av—i-fu

Ipaloe = >

(m— ;2)2%@

because of hon-negative summands

2Vl

= 24/llvull

With (2.1.19 you can compute the transformation bounds associated with this estimation. Note
that this bound will not always be attained.

Exact solution:  f(3) is continuous but not necessarily smooth, the graph may have pikes. A pike
may occur whenever two maxima regardingf p,, (z) have the same magnitude. Fig@révisualizes

this case. The minimum regardigmay be at such a pike, in this case we will call it a non-smooth
minimum, otherwise a smooth minimum.
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Pa(w) 12l o0

a0

Figure 3.6: How non-smooth minima arise

With z = €™ let .
y(B, 2) = Pu(z) + Bu(Z)
Then f can be expressed with the helpyof
f(B) = rgééjy(ﬂ, z)

and we ask for

Bmin = a'rgénin f(ﬂ)

aq

a2

What we could do, is to find all candidates®for locations of pikes and all candidates for smooth
minima. Then we had to verify which of this set is the global minimum. Unfortunately, it is not
clear, how to locate the pikes, but it is possible to find a small (i.e. finite) set of candidates for smooth

minima by determining the set of all stationary pointg,aegardings andz,

M = {(8,2) : ys(B,2) = 0,y,(8,2) =0}

M contains all local minima, maxima and saddle pointg eégardings andz. Thus it contains the

saddle point fors,i,, which is a minimum regarding and a maximum regarding

For stationary point§s, =) it holds:
(o) . (ym,z))
0 Yo (B, )

(v - Eu)
Buw(2) + %uw(z)

This implies for every stationary point:

u(z)
g

(323 = 0= yﬂ(/ﬁv Z)uw(z) + yw(ﬁa Z)
(323 = 0 = v(2)uw(2) + v (2)u(z)

= (vu)u(2)

(3.2.2)

(3.2.3)
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For everyz with (vu),(z) = 0 we can determing = ,/5%2 Theses’s are the only candidates
for a smooth minimum off (3). If for a fixed 3, y(3, z) is globally maximal in regard te, then,
sincey(3, z) is convex in regard t@, f(/3) is the global minimum and it is smooth. Otherwise the

minimum is non-smooth and we do not know how to locate it exactly.

Po
1.24 /

1.2
118 \
1.16 1 \
1.14
1.12
1.1

1.08

1.06

Figure 3.7: Graph o,

Example: Weight CDF-2,2: To verify the result we will weight the well-known CDF-2,2 wavelet
filter pair in order to minimize the norm bounds. The graphptlisplayed in figure3.7let us assume,
that the minimum is non-smooth and lies arount9. But we will locate it exactly. According to
section2.1.6it is

16
128p, = o*(1,-8,46,-8,1)+ —(1,6,1)
(6%
_ 16
1280, (r) = o?((2r)? — 8- (2r) + 44) + ?((m) +6)
_ 8
320,(r) = o(r? —4r4+11) + —(r+3)
(0%

We see again that the coefficientsfis positive, which is the reason that () is convex with
respect ta- and the maximum is at the borders]efl, 1].

8

~ _ 2
16pa(—1) = 8a”+ ?
16

~ _ 2
16pa<1) = 4da” + @

We check the candidates for a smooth minimum . ..
Pa(—1) isminimalfor o?>=1 and 16|pi|, = max{16,20} =20
Pa(1)  isminimalfor o> =2 and 16 HpﬁH = max {20, 16} = 20
o, ¢]
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...and the candidates for a non-smooth minimum

Pa(—=1) = pa(l)
8 16
8o+ — = 4o+ —
« (6
8
1o = —
(0% a2
at = 2
|ti316)p4ﬂ‘ — 12V2.
oo
minlpale = win {lpile o] el }
3
= V2
4f
argmin [pal,, = V2
(0%

This is the result we expected referring to sectioh

Since the intention of narrowing the norm bounds was to give more safety when deciding about
which pixels of the transformed image are relevant and which are not, we can expect that compression
artifacts are reduced on lossy compression. With tali¢his hypothesis can be verified.

image H 1 \ 2 \ V2 \ NN \ V2 \Chebyshev
baboon 20.71| 23.20| 24.24| 24.58| 24.48 24.42
goldhill 28.89| 30.07| 31.57| 32.05| 32.00 31.78
lena noisy | 9.54 | 10.20| 11.12| 10.97| 10.43 10.79
lena 32.01| 34.45| 35.52| 35.84| 35.80 35.55
mountain || 15.01| 17.72| 19.07| 19.49| 19.54 19.31
parrot 25.45| 30.18| 31.59| 32.17| 32.20 31.88
pepper 30.88| 33.43| 34.57| 34.95| 34.94 34.67
sarpripuls || 18.29| 19.48| 20.01| 20.18| 20.29 19.92

Table 3.3: Weighting and KEBYSHEV wavelet — Do closer norm bounds assure,
that the energy of compression artifacts is reduced? — After applying a CDF-
2,2, the bands are weighted by the factor§/2, v/4, v/8, v/16, respectively. For
comparison the GeBYSHEV wavelet constructed in sectich2.3is used in the

right column. Transformation includes 6 levels. Thereafter the images are com-
pressed to 0.5 bpp, decompressed and compared to the original image. The dif-
ferences measured 8SNR (section2) are presented here. Higher values mean
better matching of original and decompressed image. According to the theory,
from all weighted CDF-2,2 wavelets the one with weighting fac{@ should

give the best results.

As we can see, the weighting really reduces the difference between original and processed image.
Apparently, the optimal weighting factor is always a bit above the theoretical predicted va{(® of
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{753 seems to be a better choice. This could be explained since we considered one transformation
step for optimization only, and thus did not get the optimum of the whole transformation. We realize,
that the linear interpolating @=BYSHEV wavelet achieves an improvement comparable to that of an
optimally weighted CDF-2,2 wavelet, but it is not as good as the latter.

The reduction of the image difference is not only a technical improvement, it can be visually
verified, too. Examples are given in figuses.

unweighted weighted KEBYSHEV

Figure 3.8: Weighting and ©@eBYSHEV wavelet — Does reduced differences be-
tween original and lossily compressed images lead to visual improvement? The
images in the first two columns are transformed with CDF-2,2, in the second
column it is additionally weighted by/2 after every transformation step. The

right column contains images processed with the linear interpolatingse-

SHEV wavelet of sectior2.2.2 Transformation is repeated over 6 levels. There-
after the transformed images are compressed to 0.5 bpp and decompressed again.
The results are shown here.

We discover an interesting connection: With higher weighting factors the L band is amplified and
the H band is weakened. One might expect that low frequencies will more and more dominate the
decompressed image when the weighting factor increases. But figuisbows that the opposite is
true — Up to a certain point the amplification of low frequency coefficients preserves more high fre-
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guencies in the image. But the bigger safety when evaluating the significance of a wavelet coefficient
which is targeted by weighting may explain this behaviour.

Although the approach of reducing the norm bound differences was made to improve the results
of lossy image compression, there might also be an increase of the pack rate when using wavelets of
this approach for lossless compression. Tabtevalidates this assumption. We can see that for the
most images, the optimal weighting factors for good compression ratios are close to that for minimal
distortion on lossy compression (taldes).

image H 1 \ 2 \ V2 \ \8/53\ V2 \Chebyshev
baboon 6.25| 6.23| 6.21| 6.20| 6.21 6.24
goldhill 5.06 | 5.06 | 5.05| 5.06 | 5.07 5.13
lena noisy || 8.92| 8.80| 8.67 | 8.69 | 8.69 8.82
lena 456 | 457 | 4.56 | 4.56 | 4.57 4.68
mountain || 7.38 | 7.33| 7.29| 7.27 | 7.26 7.30
parrot 444 | 4.48| 451 | 450 | 4.56 4.77
pepper 497 |4.94|492| 4.90| 4.90 4.96
sarpripuls | 7.21| 7.18 | 7.15| 7.15| 7.15 7.18

Table 3.4: Weighting and @eBYSHEV wavelet — Can the amplitude of different
transformation levels be weighted in a way that increases compression efficiency?
— After applying a CDF-2,2 it is weighted by the factdrsy/2, v/4, v/8, v/16, re-
spectively. The pack rates for the4€BYSHEV wavelet are given for comparison

in the last column. Transformation is done over 6 levels. Thereafter every im-
age is lossless compressed WHAT method. The bits per pixel rate achieved is
presented here.

Approximative solution: Due to the convexity off (), there are not many difficulties for imple-
menting an iterative algorithm for finding the minimum, since there is only one. The only problem is
the big computation effort, because all maxima of a polynomial have to be determined only to com-
pute one value of (). Finding the maxima of a polynomial again requires an iteration process for
finding the zeros of the derivative. This means a nested iteration, which is pretty slow. Nevertheless,
this is the current implementation in our software package. For speedup, further implementations
could reuse the zeros found in one step as start approximations in the next step.

In the first phase the algorithm tries to find a lower and an upper bound for the minignum
f(0.5), f(1), f(2) are calculated. If they form a falling sequence it is continued with computing
values to the right:f(4), f(8), f(16), ..., if they form a rising sequence it is searched to the left:
£(0.25), £(0.125), £(0.0625), . ... When &3 is reached wheré(3) < f(2) A f(B) < f(28) then
g and2( are obviously bounds for the minimum.

The second phase narrows the bounds step by step. Starting with the Ishuadd 5, and a
o between them, some newwithin the interval are guessed and a triple, 3, #, of neighboured
points withf(3y) < f(B-) N f(By) < f(B}) is selected and passed to the next iteration step. The
points between are guessed as follows:

1. a point betweers_ andSy: (8- + o)
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2. a point betweers, and3..: 3(6o + 6+)
3. the vertex of the parabola laid through., f(5-)), (50, f(B0)) , (B+, f(B+))

The iteration is aborted whe¥,. — (5_| appear to be below a given threshold.

Weighting by lifting: How can we weight in a way that allows perfect reconstruction, even when
computing with integers?/] shows that weighting can also be done by lifting with four lifting steps
and that it is possible to choose the direction of the first lifting step. Additionally, it is pointed out that
the weighting is often part of a longer lifting sequence and it is suggested to choose the start direction
so that the first or last lifting step of the weighting can be joined with previous or subsequent lifting
steps. This way one can always reduce the weighting lifting sequence to three steps. We will leave out
this optimization and we will see, that the choice of the start direction is also a matter of computation
accuracy.

Let us follow an approach to determine four lifting steps which can perform the weighting process.
Each lifting step is represented by its polyphase matrix. The way the polyphase matrix is defined we
have to order the lifting step matrices from the right to the left. We start with lifting from the L band
to the H band. If starting with lifting in reverse direction is preferred, lifting steps can be designed to
weight byé and then the direction of every lifting step must be reversed, too.

o) ED6 )6
el o)

VR
o Q
Q= O
N————

[l-=

Comparison of matrix entries yields:

o?+ad =« (3.2.4)
—d=ab (3.2.5)

—a = ac (3.2.6)

1 =a(l+be) (3.2.7)

But we observe, that if we insef3.¢.5 and ¢.2.9 into (3.2.9
o? + a’be=a
a(l+be)=1

we obtain, that the equatio3.@.7) depends on the three other equations formed by the matrix equa-
tion. Does this mean that we can save one of the lifting steps?
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If we remove one of the lifting steps associated withr ¢ (b = 0 or ¢ = 0, respectively), the steps
for a andc as well ash andd could be joined, which would force the other coefficients to be zero and
a = 1. If we remove one of the lifting steps associated witbr d (seta = 0 or d = 0) it follows
immediately that = 0 andb = 0, respectively and in both cases= 1. Summarized, this means that
four lifting steps are necessary for weighting (different frama= 1) and there remains one degree of
freedom. What can this free parameter be used for?

Minimize rounding errors:  If we choosen = 1 we obtain the lifting steps proposed ifl]
1 2
1, a-1, —— a-—-« (3.2.8)
(0%

But is this reasonable? What about numerical properties?

Let us recall that we need the lifting scheme primarily for integer calculation. For floating point
arithmetic direct multiplication is faster and probably more accurate. With integer calculation the
main advantage of the lifting used for weighting is the possibility of exact reconstruction. But how
can this be achieved?

Imagine, we have two numbersandy which have to be weighted by a factgri.e. we want
to calculatec - x and% -y. Say,c is a shift coefficientt = 2", n > 0, thenc - x hasn trailing
Zeros in its binary representation, whergas shiftedn bits to the right and its: trailing bits are
lost. But the lifting operations are reversible! That means that the weighting performed by lifting will
lead to results different from those obtained by exact weighting with subsequent rounding in general.
Weighting by lifting will usually calculate approximations that are worse than the integer rounding
error which can be at mosét5. Thus it is of interest how these rounding errors can be minimized.

We want to get an error estimation which depends on the filters but not on the signal we will
process. Asking for an absolute error will fulfill this. We will usesawhich describes the computing
precision. Because we work with integetsyaries between-0.5 and(.5 — the maximum absolute
rounding error possible. Each time we add a value of the filtered source band to the destination band,
we have to increment the error by ondecause of rounding occurs. Of course, we always use the
absolute values of scalars that has to be multiplied with the error accumulated so far.

For simplification we choose: > 0 and because for every lifting sequengeb, ¢, d), which
weights bya, the sequencé—a, —b, —c, —d) does it as well, we can choose> 0 without loss of
generality. To avoid worrying about absolute values, we check ®ithd and @.2.9 that it is always
true thatsgn(a) = —sgn(c), sgn(b) = —sgn(d) andd < 0 because of the choice 6f Because
a(l+bc)=1,14bc= é it must bea > 1 if and only if ¢ < 0. We will use the abbreviation

1 ta>1
g =
-1 raxl1

to be able to process everything together. It is sure nowsthad, —oc, oa are all non-negative. Now
let us explore what happens if we apply the lifting steps with respect to rounding:
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L band H band
0 0

(1+b)e €

(1+b)e (I1+1—0c-(1+d))e
— d-
24b—d-(2—0c-(14b)))e (2—o0c-(1+0b))e

The sum of both errors is
(4+b—2d+oc(b+1)(d—1))e | (3.295 A (3.2.9
<4 + b4 2ab+ a%(l — )b+ 1)(—ab— 1)) .
«

(4+ (14 2a) b—i—a(l—l)(l—i—ll))(ab—i—l))a

«a
<4+ (14 2a) b—i—‘l—

; ((1+a)+11)+ozb>>e

1)1
oz—— ‘1—’b+(1—|—2a+|a—1)b €
o
N’ L:=

K O‘;l ta>1 I— 3o ta>1
= 24a a<l

2
E%—Lb = ( K—\/Lb) +2vKL

b b
. K
> 2VKL equality forb = ‘/f (3.2.9)
2y/3(a—1) :a>1
- (—)2ta) . . o1

We have observed that we can either weightdyr weight byé with changed roles of the H band
and L band to achieve the same. That means that we can restrict the weighting method far either
or a < 1 dependent on the higher precision.
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(a—1)2 > 0
a”—2a+1 > 0

—3a+3 > —a*—a—+2

31-a) > 1-o)(2+a)

v

(1) 5 Gzt

1 1 1 1—a)(2 1
4+‘—oz +2 3<—1) > 44+ |la——|+2 (1=a)2+a) ' a ==
[0 « (0 « (0
1 1—a)(2
4+l — =] +23(@ —1) > 4+ |a——|+2 1=-)Z+a)
(% (%

error estimation forn/>1 error estimation forn<1

We see that the error is smaller when we choose weighting by 1 instead of weighting by
o/ =1 >1inthe reverse direction. So we will continue with determining the lifting stepa fer1:

11—«
329=b = Cta)a
B2)=be= "% 2+O‘L(1
(1-a)
(3.29=d \/ T a
B2=a = —/(2+a)(l— (3.2.10)

Examples for weighting by lifting:  First, let us verify if there is some obvious advantage of this
solution over the one given iB(2.9. We consider the case = 1. You might argue, that the

lifting step sequence can be compressed to length zero for both solutions. But we imagine that we
are working with values of only close to 1, where such compressions are not possible. The lifting
sequences obtained by both methods are:

e (3.2.9 —traditional:(1, 0, -1, 0)
e (3.2.10 — error minimized:(0, 0, 0, 0)

It can be seen easily, that the second variant really does not do anything, whereas the first variant
adds the L band to the H band and subtracts itimmediately, again. We can see that the error minimizing
algorithm tends to use smaller lifting factors which should decrease the influences of the bands to each
other.

The weighting byv/2 as post-processing of the CDF-2,2 wavelet has shown former in this section,
that it optimizes the norm bounds of the CDF-2,2 wavelet. It should serve as a second example for
a liting decomposition here. Sinc#2 > 2 we have to work withn = 4%/5 and we can obtain the
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coefficients which minimizes rounding errors:

158
a ~ —0.617 =~ —%
b ~ 0.258 =~ @
c =~ 0733 = %
d ~ —0217 =~ ~ 56

The fractions with a power of two as denominators are of interest for machine-oriented implementa-
tions.

The lifting sequence is:

L band H band
«— —0.617-
-0.258 —
«— 0.733-
-—0.217 —

With this lifting sequence we now have a method to apply the weighted CDF-2,2 wavelet to a
signal in a fully reversible form, even if rounding errors occur.

3.2.2 Update lifting steps

We will now explore how the norm bounds can be narrowed by appending an update lifting step.

Updating problem is convex, too: We consider the filtera,, h,, ge, g, before and the filterd’, g,
after the lifting step with the lifting filtek:

h’e = he+ ges
o ho + gos
hLh, 4+ hLh, + Gege + Gogo
= 2p+ (hlg. + hl,go)s + (hegl + hogh)s + (Gege + Golo)5s

vi= U=

DO

@\

w =
~— =~
1

We want to verify, thap’ is convex regarding:
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2p'(tso + (1 —t)s1)

= 2p+ou(tso+ (1 —t)s1) +v(tso+ (1 —t)s1) +

u(tso + (1 —t)s1)(tso + (1 —t)s1)
= 2p+o(tso+ (1 —t)s1) +o(tso+ (1 —t)s1) +

u (mso + (L= 0)s1(1 — t)sy + Eso(1 — £)s1 + tsom)
= (1—t)-2p+ (1 —t)vsy + (1 — t)vs71 + (1 — t)*usys1 +

t-2p + tusg + 150 + t2udpso + t(1 — t)u (5051 + 5057)
= t-2p'(s0) + (1 —t) - 2p/(s1) + (t* — t)Sos0 + (t* — t)51s1 + (1 — ) (Sos1 + 5051)
= t-2p'(s0) + (1 —1t)-2p'(s1) + >t0(t Zol)m(so —s1)

>0

< 20 (so) 4+ (1 —t) - 20/ (s1)

Approximative solution: The algorithm implemented in our software package for determining an
update lifting step works as follows:

Start withs = 0. In every iteration cycle a directiofis with a given norm (increment) is guessed.
If [p'(s + As)|| < IP'(s)]lo it is assumed that further following this direction is successful, the
increment is increased and a further step towards this direction is tried. If the step does not reduce
7|l the increment is decreased and the step is canceled. This is repeated until the increment falls
below a given value.

image || CDF22| 2 | 4 | 10 | weight
baboon 6.25 | 6.29]| 6.30| 6.32| 6.28
goldhill 5.06 |5.08|5.09|5.11| 5.10
lena noisy 892 |574|5.74|568| 5.66
lena 456 | 458457460 4.64
mountain 738 | 7.41|7.43|7.46| 7.38
parrot 444 | 4.61|4.62| 4.73| 4.66
pepper 497 |4.99|5.02|5.05| 5.10
sarpripuls 721 | 7.23|7.25|725| 7.18

Table 3.5: Improving the norm bounds — How do further steps which improve
the norm bounds influence the pack rate? — The CDF-2,2 is compared to auto-
matically generated wavelets, each consisting of a symmetric least-mean-square
predictor of size 6 and an update lifting step of a symmetric filter of size 2, 4, 10,
respectively and the same predictor combined with a norm minimizing weight-
ing. Transformation is done over 6 levels. Thereafter every image is lossless
compressed witEZT method. The bits per pixel rate achieved is presented here.

The results in tabl&.5 are generated with lifting step sequences which summarize the methods
developed in this chapter. The first lifting step reduces the values on H band by linear least mean
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square prediction, the second lifting step narrows the norm bounds. For comparison the second step
is substituted with optimized weighting in the last column.

The artifacts introduced to the image when working with least mean square predictors and lossy
compression are shown in figuged. The distortions of the CDF-2,2 appear quite soft, whereas the
artifacts of the least mean square predictor are peaks and grids. The artifacts of the least mean square
predictor look comparable for different update lifting steps.

CDF-2,2 Least mean square prediction

Figure 3.9: Artifacts caused by linear prediction wavelets — The left image is
transformed with an unweighted CDF-2,2 wavelet, the right image is transformed
with a 10 tap symmetric least mean square predictor and a 4 tap norm minimizing
update. Transformation is repeated over 6 levels. Thereafter the transformed
images are compressed to 0.5 bpp and decompressed again. The results are shown
here.
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Chapter 4

Summary

4.1 Results and perspectives

Let us summarize expectations and results found in this work and how the exploration could be con-
tinued:

e Operator norm of a wavelet transformation

In section2.1.2we derived a method for determining the exactdeiDean operator norm of

a filter matrix application which is equivalent to a wavelet transformation step. Further explo-
rations may result in a method that can compute the norm of a complete wavelet transformation
with arbitrary number of levels.

In the case of two bands we could simplify the method in a way that even allowed optimization
of the norm bounds. This was done by introducing the polynomial(2.1.19. In the case of

more than two bands an analogous simplification is not obvious. Further research may result in
the needed simplification or in optimization approaches that work without it.

e CHEBYSHEV wavelets

In section2.2 we made an approach for symmetric wavelets that have naturally close norm
bounds. For the case of the filter lengths (5,3) we have seen, that there are really wavelets
that fulfill the requirements. The one that performs linear interpolation as the CDF-2,2 leads to
compression rates comparable with CDF-2,2 but no superior ones.

For CHEBYSHEV wavelets with longer filters we found a basic structure in seci@¥ By
the way, GHEBYSHEV wavelets exist at other lengths, too, but it is more difficult to assign to
them additional properties.

Future explorations may find other applications, where the outermost filter coefficients are given
and symmetric wavelet filters with close norm bounds are requested.
e Linear prediction

It was expected that we can improve the compression rate considerably when using image de-
pendent linear prediction (secti@nl.3 instead of predicting with predefined filters.

As we can see, the plain prediction does not increase the compression efficiency at the expected
extent, in general. The filters generated do not differ very much from a linear interpolating
one and the energy is decreased slightly better compared to the decrease achieved with a static
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linear interpolation. Conversely this means, that the linear interpolation is a good choice for
most pictures.

An improvement of the compression can be achieved by a following update lifting step (see
below), a technique that is widely used already for common wavelets. It has to be checked, if
multiple adaptive prediction/update combinations can further increase compression efficiency.

A general disadvantage of wavelets designed by least mean square lifting is, that they do not
fulfill any smoothness conditions. This may make compression artifacts more annoying.

A general advantage is: If we use a wavelet which is found through standard assumptions about
the regularity of the input signal, this will fail on images which do not fulfill this assumptions.

E.g. this is the case for noise. Since the least mean square optimization will never produce data
with more energy than before, it is not possible that noise is amplified. As soon as the algorithm
“detects” noise, what means that a prediction is impossible, it will weaken the filter coefficients
accordingly. This theoretical argument can be verified with the noisy satellite photography
sar _pripuls . Butas you can see, the compression rates are not mentionable better than with
standard wavelets. The noise seems to be too smooth, so that the linear interpolation succeeds
in the first levels, nevertheless.

One can do tests with more high frequent noise. Then the least mean square prediction performs
better than e.g. the CDF-2,2, but it exceeds the limit of a rate of 8 bits per pixel. Instead of a
“compression” to a bit rate above 8 bits, one would better store the original image in this case.

A type of image which can be processed very good by least mean square prediction are images
with very regular patterns superposed. Such patterns could originate e.g. from a coarse printing.

Weighting

The compression results show that weighting the wavelet filters as in s8ctidican increase

the compressibility of a transformed image. The visual comparison of images that are lossily
compressed with plain CDF-2,2 and optimally weighted CDF-2,2 proves the better properties
of a weighted CDF-2,2 wavelet.

For general wavelet pairs we know, how to decide if the minimum of the wavelet operator norm
with regard to the weighting factor is smooth or not. If it is smooth, it can be located. A method
for locating a non-smooth minimum has to be derived, yet. At least a faster iteration which is
not nested, should be possible. An alternative may be interleaved iterations.

Again, we may ask for optimal weightings for filter matrices larger than2.

Norm minimizing update

An additional update lifting step was introduced in secfioh 2for reducing the norm bounds

of the filter operation. Weighting the filters (see above) has shown, that minimizing the norm
bounds may also lead to better pack results. The benchmarks show that this is true for updating
steps, too, but the effect is smaller.

As stated for the weighting problem, the optimization iteration has to be made faster in future
or necessary conditions have to be found, that allow a restriction to a small set of candidates for
the optimum. The current implementation needs too much computational power.

Both least mean square prediction and norm minimizing update steps are methods, that do not
increase the overall compression efficiency at an extent that would excuse the computational
effort of the current implementation.
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4.2 Implementation

The methods found in this work are implemented as extensions to the C++ prolgkaby Jorg Ritter

which was originally developed for testing the CDF-2,2 wavelet transformation with embedded zero
tree compression, including transformation and compression in partitioned images. You can access
these methods by specifying command line options when invoking the compression program. The
most important options are:

e -l n
Specifies the number of transformation levels.
With the new functions it is possible to specify different wavelets at successive transformation
levels. Eachl option starts a new block of wavelet specifications which are used for the next
n transformation levels.

o -lift type parameters
Specifies a lifting step.
typeselects one of the lifting step types listed below,
parameterscontains parameters specific to the lifting step type.

e -C
Compress the transformed image with an embedded zero tree algorithm similar to the SPIHT
algorithm of Said/Pearlmari.{].

e -bpp numberof bits per_pixel
Abort the bit stream of compressed data, as soon as the file reaches the size it had, if it would be
saved uncompressed but witbmberof_bits_per_pixel. That is the way the lossy compression
with EZT works. The most relevant data is transferred first, the less relevant data is transferred
last. If you abort the stream you obtain a good approximation of the original image.
Note that the file size measurement does not include header information. Among other things,
the header contains all coefficients of the used lifting filters, which consumes space of

0 (J-Z(lJr \sky)>
k

where.J is the number of levels ang; are the lifting filters within each level.

The type of wavelet is specified by its lifting step decomposition. The transformation is performed
directly by applying these lifting steps. The lifting steps can be composed of custom filters or filters
that are calculated at run-time. The types which can be passed4dtthe option are:

e weight factor
Weight the filters by a the scaltactor

e weight minbound
Weight in order to minimize the difference between lower and upper transformation norm
bound. See sectiohfor explanation.
The necessary factor is approximated at run time.
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e cdf n,m
The standard CDF-2,2 wavelet (developed lyHEN, DAUBECHIES, FEAUVEAU, see P]) can
be accessed wittdf 2,2 , other wavelets of the CDF family are not implemented yet, but the
option specification allows this future extension.

e cheby n,c
CHEBYSHEV wavelet with a low pass filtek of 2n + 1 taps and an outer coefficieat Only
members withn = 2 out of this family are supported currently, the ones we considered in
section2.2.2in detail.

e minenergy n, minenergysym n
Do a predicting lifting step which minimizes the energy on the H band
The required lifting filter is determined after the previous steps has been processed. Arbi-
trary filter lengthsn are supported and restriction to symmetric filters is possible with the
minenergysym option.

e minbound n, minboundsym n
Do an update lifting step which minimizes the difference between lower and upper wavelet
norm bound.
The previous lifting steps are merged to a filter pair, and the desired filter is approximated for
that. Arbitrary filter lengths and restriction to symmetric filters are allowedrhinboundsym .

In the benchmark tables that compare pack rates, values are given that are average numbers of bits
per pixel. This does not match exactly the mathematical definition of the first order entropy, which
can be calculated from the histogram of the image. The pack rates given are the ones achieved with
EZT compression and the measurement is the same as fdsipe option.

There is another parameter which can not be influenced by command line arguments: The type of
numbers used for the transformation and image storage. The number type can be switched between
integers and floating point numbers, but switching requires recompilation. Working with floating
point numbers gives better packing results (about 0.3 bpp improvement are possible). But you can
not compare the compression rates of the floating point and the integer arithmetic directly, because a
transformed image with floating point values can not be restored exactly after compression. To keep
the option of lossless compression, all benchmarks are made with integer transformations only.

The computations are supported by the Template Numerical TobKTt [10] which provides
functions for doing Linear Algebra in C++. This includes management of matrices and vectors
of arbitrary types, basic matrix/vector operations and various matrix factorization algorithms (LU,
CHOLESKY, QR decomposition).



Appendix A

Test images

Here are the images used for compression tests. Some of them were clipped to a size of a power of
two in respect of the limitations of the current implementation offd pack algorithm.

baboonj512 x 512 pixel goldhill, 512 x 512 pixel

77
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lena,512 x 512 pixel lena noisyp12 x 512 pixel

sarpripuls,512 x 512 pixel

e LY e e

mountain512 x 256 pixel parrot,256 x 128 pixel
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