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Introduction

The discrete wavelet transformation (see section1.1 for details) has become a very popular tool to
preprocess images to improve the performance of many tasks in the field of analysis and compression
of signals. In this work we focus on image data and the enhancement of the compression results.

Before the JPEG-2000 standard the block-wise FOURIER transformation was used for image pre-
processing in the JPEG File Interchange Format (JFIF) standard of the Joint Photographic Expert
Group (JPEG) for a long time. The purpose of both wavelet and FOURIER transformation is to
emphasize the important details of an image and suppress those which could be disregarded. The
preprocessing itself is reversible in both cases, but using a FOURIER transformation algorithm it is
harder to avoid rounding errors than in case of wavelets. That is because one dimensional wavelets
can generally be computed with the lifting scheme which prevents from rounding errors. [4]

Once the transformation on an image is completed the compression is performed. It can be either
lossless, which means that it converts to a more compact data representation only, or it can be lossy,
in which case details are canceled up to a given threshold.

One can verify intuitively, that the wavelet decomposition is a more natural description of images
than block-wise FOURIER transform: Imagine you get a pictureA and the same pictureB digitized
at the double resolution. When lossily compressingA andB to the same file size, the reconstructed
images will differ quite much if packed with JFIF because the blocks used for the FOURIER transform
have different relative sizes compared to the sizes ofA andB. Thus the blocks are relatively smaller
in B and the scope for detecting structures is smaller.

The advantage of wavelet transformation is that since images are decomposed into informations
about structures on each scale, one can easily obtain an image fromB similar to A by ignoring
information about small scales. That is one possibility to achieve compression in a lossy way.

In this work a further attempt is started to improve the image transformation for better compression
results. The properties whose optimization is considered here are

1. High correlation between the relevances of details in the image and its transformed counterpart.
Since the compression effect is achieved by neglecting details in the transformed image, it is
important that details in the transformed image correspond to details in the original image and
that high values in the transformed image correspond to more relevant features of the origi-
nal image. This correlation can be mathematically expressed by close bounds of the wavelet
transformation operator.

2. Small values for the most pixels in the transformed images which ensure a concentration of high
values on a few pixels

This document is structured accordingly: After introducing in the mathematical background of the
wavelet transformation and declaring some notations used in this document in chapter 1, the second
chapter covers the determination and optimization of the EUCLIDean norm estimations between signal
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and wavelet coefficients vector. A family of wavelets called CHEBYSHEV wavelets is introduced,
which has symmetric filters as well as close norm bounds. We explore in detail later how weighting
the filters of a wavelet filter pair influences the norm bounds. In the third chapter an image dependent
construction of lifting steps with least mean square linear prediction is developed. Some variants of the
basic scheme are presented. All wavelets which are discussed in this thesis are tested as preprocessing
for a compression with an Embedded Zero Tree (EZT) coder. From all of these transformations
(CHEBYSHEV, standard wavelet with weighting, linear prediction) the weighting method leads to the
most improvement of the compression rate.

I want to thank Prof. Dr. Paul Molitor for being open-minded for student’s problems always,
Dipl.-Inform. J̈org Ritter for his extensive support for this work, my siblings for proof-reading, Helmut
Podhaisky, Clemens Ladisch and Andreas Beckmann for their exhaustless pool of advises for LATEX
and V. Marino and L. Schmiedtchen for kindly supporting me with needed articles.

This document and the C++ source code of the complete transformation and compression software
package are available from the included CD. This and possibly revised future versions may be also
downloaded from

http://www.henning-thielemann.de/
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Chapter 1

Mathematical background

1.1 What are wavelets?

Wavelets (little waves) are functions that fulfill certain self-similarity conditions. When talking about
wavelets, we mostly mean a pair of functions: the scaling functionφ and the wavelet functionψ.
[16] Several extensions to this basic scheme exist, but for the introduction we will concentrate on this
case. The self similarity (refinement condition) of the scaling functionφ is bounded to a filterh and
is defined by

φ(t) = 2
∑
k∈Z

hkφ(2t− k) hk ∈ R (1.1.1)

which means thatφ remains unchanged if you compress it int direction by a factor of 2, filter it withh
and amplify the values by 2, successively (figure1.1). One could also say, thatφ is the eigenfunction
with eigenvalue 1 of the linear operator that is described by the refinement. Since eigenfunctions are
unique only if the amplitude is given, the scaling function is additionally normalized to∑

k∈Z
φ(k) = 1

to make it unique.
The wavelet functionψ is built onφ with help of the filterg (figure1.2):

ψ(t) = 2
∑
k∈Z

gkφ(2t− k) gk ∈ R (1.1.2)

φ andψ are uniquely determined by the filtersh andg.
Variants of these functions are defined, which are translated by an integer, compressed by a power

of two and usually amplified by a power of
√

2:

ψj,l(t) = 2j/2ψ(2jt− l)
φj,l(t) = 2j/2φ(2jt− l) (1.1.3)

with {j, l} ⊂ Z, t ∈ R

• j denotes the scale – the biggerj the higher the frequency and the thinner the wavelet peak

• l denotes the translation – the biggerl the more shift to the right, and the biggerj the smaller
the steps

3
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a

b
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-1 0 1 -2 -1 0 1 2

Figure 1.1: Refinement condition of the scaling function – In stepa the scal-
ing function is duplicated, translated and amplified, the used filter coefficients
h−1 = 1

4 , h0 = 1
2 , h1 = 1

4 correspond to the scaling function filter of the CDF-

2,2 wavelet that will be quoted frequently in this document. In stepb the trans-

lated duplicates are added (stepa and b form the filtering). Stepc scales the
function in abscissa and ordinate direction. A scaling function is characterized by
being invariant under the sequence of the stepsa , b , c .

a

bc
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Figure 1.2: Building the wavelet function from scaling functions – The steps
are analogous to figure1.1. The filterg is borrowed from the CDF-2,2 wavelet,
again, and is determined by the coefficientsg−1 = −1

8 , g0 = −1
4 , g1 = 3

4 , g2 =
−1

4 , g3 = −1
8



1.1. WHAT ARE WAVELETS? 5

The goal is to represent signals as linear combinations of wavelet functions at several scales and of
scaling functions of the widest required scale. The choice of wavelet functions as primitives promises
to be good, because natural signals like audio streams or images consist of the same structures at
different scales and different positions.

x =
∑
l∈Z

clφ−J,l +
0∑

j=−J

∑
l∈Z

dj,lψj,l

cl, dj,l are the wavelet coefficients. They form the transformed signal we want to feed into a compres-
sion routine.J corresponds to the number of different scales we can represent, which is equal to the
number of transformation levels that will be considered later in detail. The biggerJ the more coarse
structures can be described. A possible set of scaling and wavelet functions is shown in figure1.3.

φ−2,l

ψ−2,l

ψ−1,l

ψ0,l

Figure 1.3: A basis consisting of scaling and wavelet functions of the CDF-2,2
wavelet – This example basis covers three levels of wavelet functions. Only a
finite clip of translates is displayed. To visualize the translation of the functions,
the abscissa is clipped to a finite interval.

What we usually start on, are discrete functions, known as sampled audio or image data. For
simplicity we consider only one dimensional data. In the case of the two dimensional image data
we process rows and columns separately. Its values. . . , x−1, x0, x1, x2, . . . represent the amplitudes
of pulses. If we want to integrate such signals into the wavelet theory we have to read thexl as
amplitudes of small scaling functions.

x =
∑
l∈Z

xlφ0,l

Figure1.4 gives an example for a signal that is approximated with a linear combination of scaling
functions.

How can we convert between both signal representations? Retrieving the signal from the wavelet
decomposition is the direction which follows from the refinement relation (1.1.2) immediately. In the
wavelet decomposition of a signal we will replace all functions of the coarsest structure at levelJ by
their refinements. This way we come to the wavelet decomposition of levelJ−1, what can be iterated
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a

b

c

Figure 1.4: A sine signal approximated by a linear combination of scaling func-
tions. a is the original sine,b is an approximation with scaling functions of
level 0, c is an approximation with scaling functions of level -1. If you have
decomposed a signal into its wavelet representation with at least one level (which
holds the information ofb ), you can obtain the approximationc by erasing the

wavelet coefficients of the wavelet functions at level 0 in the approximationb .
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until reaching level0 which is equal to the searched signal representation.

x(t) =
∑
l∈Z

clφ−J,l(t) +
0∑

j=−J

∑
l∈Z

dj,lψj,l(t)

According to the definition ofφj,l, ψj,l (1.1.3)

= 2−J/2

(∑
l∈Z

clφ(2−J t− l) +
∑
l∈Z

d−J,lψ(2−J t− l)

)
+

0∑
j=1−J

∑
l∈Z

dj,lψj,l(t)

Apply refinement conditions (1.1.1),(1.1.2)

= 21−J/2

(∑
l∈Z

cl
∑
k∈Z

hkφ(2 · (2−J t− l)− k) +
∑
l∈Z

d−J,l

∑
k∈Z

gkφ(2 · (2−J t− l)− k)

)
+

0∑
j=1−J

∑
l∈Z

dj,lψj,l(t)

SubstituteL := l

= 21−J/2
∑
k∈Z

(∑
L∈Z

(cLhk + d−J,Lgk)φ(2 · (2−J t− L)− k)

)
+

0∑
j=1−J

∑
l∈Z

dj,lψj,l(t)

Substitute backl := 2L+ k

= 21−J/2
∑
l∈Z

(∑
L∈Z

cLhl−2L +
∑
L∈Z

d−J,Lgl−2L

)
︸ ︷︷ ︸

c′l:=

φ(21−J t− l) +
0∑

j=1−J

∑
l∈Z

dj,lψj,l(t)

=
∑
l∈Z

√
2c′lφ1−J,l(t) +

0∑
j=1−J

∑
l∈Z

dj,lψj,l(t)

Indeed, this is the signal representation asJ − 1 level wavelet decomposition. We see that the
new coefficientsc′l are derived fromcl andd−J,l by a kind of filtering. The difference to traditional
filtering is, that for evenl, c′l depends only onhk andgk with evenk, and for oddl, c′l depends only
onhk andgk with oddk. This is the reason why we will split bothg andh in its even and odd indexed
coefficients for most of our investigations.

It is easy to see that the conversion from wavelet coefficients to signal values is possible without
knowingφ or ψ, the only information needed, are the filters which belong to them. Under certain
conditions, the same is true for the reverse conversion. This will become clearer in section2.1.2. It
allows us to limit our view to the filtersg andh and hide the functionsφ andψ – they will not appear
any longer in this document.

The Discrete Wavelet Transform (DWT) which is used to analyse signals for finding out specific
properties or for further processes like compression consists of applying the filtersg andh to the signal
and obtaining a high frequency band H and a low frequency band L, both with the half resolution int
of the input signal. As in figure1.5the DWT is usually recursively applied on each L band to explore
bigger structures of the original signal.

It is possible to extend this scheme in a way, that the H bands are filtered and split, too.
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H0

L0

H1

L1

H2

L2

processing
︸ ︷︷ ︸ ︸ ︷︷ ︸

DWT (analysis) inverse DWT (synthesis)

Figure 1.5: The tree of levels as produced by the wavelet transformation. – The
input is split into the bands L0 and H0 with the half sample rate by applying the
filtersh andg, respectively. Then in turn, L0 is split into L1 and H1 with the same
filter procedure and so on.

1.2 Notations

Let us introduce some advantageous notations that shall be used throughout this document.
Since we work with discrete signals here, signals and filters can be presented by vectors. In many

cases there is no need to distinguish between signals and filters. In these cases we will call them
vectors in general. A signalx starting at sampling timem ∈ Z ending atn ∈ Z,m ≤ n is written as

x = (xm, xm+1, . . . , xn−1, xn)T .

Analogous a filterf with coefficients indexed fromm to n is declared with

f = (fm, fm+1, . . . , fn−1, fn)T

Indeedm,n may be negative, which is uncommon for the usual vector notation. Because of that,
the range of indices is not obvious in general. For that purpose we will emphasize the index 0:

(fm, fm+1, . . . , f−1,f0, f1, . . . , fn−1, fn) (m ≤ 0, 0 ≤ n)

Usually, we will choose the indicesm andn so that the leading and trailing coefficientfm andfn

are non-zero. The length of a vectorx is defined as

|x| = n−m

This means that a vector consisting of one component has the length 0! This is wanted because it
simplifies length calculations for filters applied to signals or for cascaded filters.n−m+ 1 is called
thenumber of taps.

Theconvolutiony = f ∗ x of two vectorsf andx is defined by the calculation of the components
of y:

yj =
∑
k∈Z

fkxj−k

One can easily verify that it holds:

|y| = |f |+ |x|
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Unless stated otherwise, filter coefficients and signal values are complex numbers.
Sometimes it is an advantage to imagine signals and filters as LAURENT polynomials.

x(z) = xmz
m + xm+1z

m+1 + · · ·+ xn−1z
n−1 + xnz

n

We will use the notationsx andx(z) simultaneously.x means the vector as well as the associated
polynomial. Vectorsx andy can be convolutedx ∗ y whereas the polynomialsx andy are multiplied
x · y – the operation is the same. In opposition tox, x(z) is a complex number. It is the value of the
polynomial at the argumentz. E.g. it is not useful to differentiatex(z), but differentiating ofx is. ’◦’
should be used as general place holder for the argument of a polynomial. E.g. we can writex(◦2),
insinuating thatx(◦2) is a polynomial again.

With this notation we can write some other things quite easy.

x(e−iω) the complex amplitude of the frequencyω ∈ R in the sig-
nal x, thusx(e−iω) provides the FOURIER transform of the
signalx when varyingω

x(−◦) every even component ofx is negated
x(◦2) a zero coefficient is inserted between every component; the

polynomial gets even-indexed coefficients exclusively
x(◦−1) the components are in reversed order
f(z) · x(z) = (f ∗ x)(z) the product of polynomials is equal to the convolution of their

coefficient vectors
f(◦) = f(◦−1) identifies a symmetric filterf , if all coefficients are real

The conjugated filterf of a filterf will be defined as follows:

f = (fm, fm+1, . . . , fn−1, fn)
f =

(
fn, fn−1, . . . , fm+1, fm

)
Different from what you might expect, it does not hold, that the so defined conjugated filter assumes
the conjugated values for equal arguments (i.e.f(z) = f(z)) in general. This is only true for argu-
ments on the complex unit circle, i.e.|z| = 1, since

f(z) =
∑
k∈Z

fkzk

=
∑
k∈Z

fkz
k

because|z| = 1

=
∑
k∈Z

fkz
−k

=
∑
k∈Z

f−kz
k

= f(z) (1.2.1)

The definition of conjugated filters helps us to explain symmetric filters. Since one expects of a
symmetric filterf with real coefficients that it does not change the phases of the frequencies of the
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signal it is applied to, we will use symmetry and linear phase behaviour as synonyms in the complex
coefficients case, too. That means a symmetric filter has to fulfill

∀ |z| = 1 : f(z) ∈ R

or equivalently

∀ |z| = 1 : f(z) = f(z) (1.2.1)= f(z)

Since the FOURIER transformation is injective it followsf = f . That means thatf = f is an
equivalent formulation for linear phase filters.



Chapter 2

Transformation norm bounds

For lossy compression it is important to know how much a modification of the transformed signal
distorts the restored signal. You expect that small modification of the transformed signal causes small
distortions in the restored data. But there is an uncertainty in general.

Consider a vectorx of the input signal (e.g. an image or audio data) and the operationW which
is performed by a complete wavelet transformation. The transformed signalWx is now modified
by a lossy compression. The resulting signal after decompression shall be denoted byWy. This is
permitted, because every wavelet transformation usable for compression must be invertible, which
means that for any modified transformed data there is an restored input signaly.

We are looking for an accurate estimation of how much the signal changes if a modification occurs
on the transformed signal. For measuring the difference of two signals the peak signal-to-noise ratio
(PSNR, see [12]) is widely used. It is a compromise between visual perception and easiness of
calculation. ThePSNR is a logarithmical scaled form of the EUCLIDean metric where the possible
value range of the sampled data has an influence, too.

Let x, y be signals, each consisting ofn values with a possible range of[0, xmax] (e.g.[0, 255] for
8 bit images), then the peak signal-to-noise ratio is defined by

PSNR(x, y) := 20 log10

xmax ·
√
n

‖x− y‖2
dB

= 10 dB ·
(
log10(x

2
max · n)− 2 log10 ‖x− y‖2

)
Since the logarithm function is monotonous and the value range is constant, any optimization of

the PSNR value can be done through optimizing the EUCLIDean norm, which is much easier.
Translated to this terms, we want estimations for‖x− y‖2 depending on‖Wx−Wy‖2 of the

form
∀x, y : A · ‖x− y‖2 ≤ ‖Wx−Wy‖2 ≤ B · ‖x− y‖2

where the constantsA andB (bounds) have to be determined. Good constantsA andB are those, that
lead to equality for some (not necessarily equal) pairs ofx andy:

∃x, y : A · ‖x− y‖2 = ‖Wx−Wy‖2
∃x, y : ‖Wx−Wy‖2 = B · ‖x− y‖2

In the context of wavelet functions, constantsA andB similar to these are calledframe bounds.
Estimations are given in [3], chapter 3.3. Since we are working with discrete sequences of coefficients
instead of continuous functions and wavelet functions, this is not what we are looking for.

11



12 CHAPTER 2. TRANSFORMATION NORM BOUNDS

Since the wavelet transformation is a linear operator we get

Wx−Wy = W (x− y)

and we can replacex− y by z.

‖x− y‖2 = ‖z‖2
‖Wx−Wy‖2 = ‖Wz‖2

Thus we can limit the consideration of bounds to single signals rather than pairs of signals.

∀z : A · ‖z‖2 ≤ ‖Wz‖2 ≤ B · ‖z‖2

The discrete wavelet transformation is a linear operator on a finite vector space and thus associated
with a matrix. Matrix operations are always bounded and its smallest bound is calledmatrix norm.
So, on the one hand we can write as upper bound estimation

‖Wz‖2 ≤ ‖W‖2 · ‖z‖2

on the other hand we get a lower bound with help of the identityz = W−1Wz, provided thatW
is invertible

‖z‖2 =
∥∥W−1Wz

∥∥
2

≤
∥∥W−1

∥∥
2
· ‖Wz‖2 (2.0.1)

and finally

‖W‖−1
2 · ‖Wz‖2 ≤ ‖z‖2 ≤

∥∥W−1
∥∥

2
· ‖Wz‖2

or equivalently ∥∥W−1
∥∥−1

2
· ‖z‖2 ≤ ‖Wz‖2 ≤ ‖W‖2 · ‖z‖2

We note that
∥∥W−1

∥∥−1

2
is the lower bound for an operatorW . Missing a symbol for lower bounds,

it shall be used even in the case thatW is not invertible. IfW is not invertible,
∥∥W−1

∥∥
2

could be
interpreted as limit∞ because there are non-zero vectorsz which will be mapped toWz = 0, and
because (2.0.1) it is

∥∥W−1
∥∥

2
≥ ‖z‖2

‖Wz‖2
=∞ and this means

∥∥W−1
∥∥−1

2
= 0.

Calculating the norm bounds for the whole transformationW is too complex, thus we will content
with the bounds for one transformation step. How does the bounds for the whole transformation
correlate with the bounds for the single transformation steps?

Let Tj , Tk be some transformation steps. We know from Linear Algebra [19] that the EUCLIDean
matrix norm is sub-multiplicative:

‖Tj · Tk‖2 ≤ ‖Tj‖2 · ‖Tk‖2 (2.0.2)

We have to take into account, that later transformation steps work only on a part of the data that
the former transformation steps have produced. But this does not change the bounds of the single
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transformation steps because there are always signalsx that are transformed toy = Tj−1 · · · · · T0 · x
where all coefficients ofy that will not be processed byTj are zero already. In other words: When
searching for bounds for transformation steps, we need not to distinguish between the levels where
the transformation is applied.

Thus forJ transformation steps it follows:

‖W‖2 =

∥∥∥∥∥∥
J−1∏
j=0

Tj

∥∥∥∥∥∥
2

≤
J−1∏
j=0

‖Tj‖2

Analogous for the inverse transformation it follows:

∥∥W−1
∥∥

2
=

∥∥∥∥∥∥
0∏

j=J−1

T−1
j

∥∥∥∥∥∥
2

≤
J−1∏
j=0

∥∥∥T−1
j

∥∥∥
2

∥∥W−1
∥∥−1

2
=

∥∥∥∥∥∥
0∏

j=J−1

T−1
j

∥∥∥∥∥∥
−1

2

≥
J−1∏
j=0

∥∥∥T−1
j

∥∥∥−1

2

For identical steps this leads to:

‖W‖2 =

∥∥∥∥∥∥
J−1∏
j=0

T

∥∥∥∥∥∥
2

≤ ‖T‖J2

∥∥W−1
∥∥−1

2
=

∥∥∥∥∥∥
0∏

j=J−1

T−1

∥∥∥∥∥∥
−1

2

≥
∥∥T−1

∥∥−J

2

Remark.We realize, that the consideration of single transformation steps instead of the whole trans-
formation results in coarser bounds.

2.1 Determining the EUCLIDean norm bounds for one wavelet trans-
form step

2.1.1 Simple filters

The wavelet transformation consists mainly of signal filtering. Thus we will start on calculating the
norm bounds when applying a plain linear filterf to a signalx:

y := f ∗ x
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The convolution performed byf can be written as a matrix

F =



fn fn−1 fn−2 · · · fm+1 fm 0 · · · 0 0 0
0 fn fn−1 · · · fm+2 fm+1 fm · · · 0 0 0
0 0 fn · · · fm+3 fm+2 fm+1 · · · 0 0 0
... ... ... ... ... ... ... ... ... ... ...
0 0 0 · · · fn−1 fn−2 fn−3 · · · fm 0 0
0 0 0 · · · fn fn−1 fn−2 · · · fm+1 fm 0
0 0 0 · · · 0 fn fn−1 · · · fm+2 fm+1 fm


In general, a matrix norm‖·‖ which is associated with a vector norm must fulfill for vectorsx

∀x : ‖Fx‖ ≤ ‖F‖ · ‖x‖

and the matrix norm is the smallest possible constant in that inequality. Thus it is defined as

‖F‖ = sup
x 6=0

‖Fx‖
‖x‖

= sup
x 6=0

∥∥∥∥F · x

‖x‖

∥∥∥∥
let y := x

‖x‖

= max
‖y‖=1

‖Fy‖

In case of the EUCLIDean norm an identity is known, which requires the calculation of the eigen-

values ofF
T
F .

‖F‖2 =
√
λmax

(
F

T
F
)

∥∥F−1
∥∥−1

2
=

√
λmin

(
F

T
F
)

It is also well known, that the eigenvectorsxmax andxmin associated with the eigenvaluesλmax

andλmin respectively, are the vectors where the bound estimations become equalities:

‖F · xmax‖2 = ‖F‖2 · ‖xmax‖2
‖F · xmin‖2 =

∥∥F−1
∥∥−1

2
· ‖xmin‖2

But determining the bounds with the help of the filter operation matrix is costly and the result
depends on the signal length. But we remember that the FOURIER transform turns filtering into
multiplying [5] and that the EUCLIDean norms are left unchanged due to PARSEVAL’s equation.

We have not considered values outside the known signal so far. We could fill them with zeros, or
we could mirror the signal at its time boundaries to obtain a continuous extension (this is widely used
for the computation of the DWT), but for easy filtering using the frequency spectrum the best choice
is the assumption of periodic signals.
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Let n be the length ofx and assume this signal is periodic byn, thenζk := e−2πik/n identifies
the frequency which hask cycles within then values of the signal. With it you can describe the signal
and the filtered signal in the frequency space by

x̂ =
(
x(ζ0), x(ζ1), . . . , x(ζn−1)

)T
f̂ ∗ x =

(
(f ∗ x)(ζ0), (f ∗ x)(ζ1), . . . , (f ∗ x)(ζn−1)

)T
=

(
f(ζ0) · x(ζ0), f(ζ1) · x(ζ1), . . . , f(ζn−1) · x(ζn−1)

)T
PARSEVAL now tells us that

‖x‖2 = ‖x̂‖2
‖f ∗ x‖2 =

∥∥∥f̂ ∗ x∥∥∥
2

In other words: In the frequency space the filter operation is associated with a diagonal matrixF̂

f̂ ∗ x = F̂ · x̂

F̂ =


f(ζ0) 0 · · · 0

0 f(ζ1) · · · 0
...

...
...

...
0 0 · · · f(ζn−1)


Since the norms of the vectors are equal, the matrix norms are equal, too, because the EUCLIDean

matrix norm is defined via the vector norm.

‖F‖2 =
∥∥∥F̂∥∥∥

2
(2.1.1)

We know thatF̂
T
F̂ is also a diagonal matrix then, and in this case the eigenvalues are just the

values on the diagonal and the associated eigenvectors are unit vectors. We obtain

∥∥∥F̂∥∥∥
2

=
√

max
{
f(ζk)f(ζk) : k = 0, . . . , n− 1

}
= max

{√
f(ζk)f(ζk) : k = 0, . . . , n− 1

}
= max

{∣∣∣f(ζk)
∣∣∣ : k = 0, . . . , n− 1

}
with x̂ = ~ek thekth unit vector as the one where

∥∥∥f̂ ∗ x∥∥∥
2

reaches the upper bound.

For better comprehensibility, we will also derive this conclusion immediately without usage of
eigenvalues.

First, we show that the largest absolute frequency coefficient of the filter vector is a bound for the
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filter operation performed byf :

‖f ∗ x‖2 =
∥∥∥f̂ ∗ x∥∥∥

2

=
∥∥∥(f(ζ0) · x(ζ0), . . . , f(ζn−1) · x(ζn−1)

)T∥∥∥
2

=

√√√√n−1∑
j=0

f(ζj)f(ζj) · x(ζj)x(ζj)

let k be an index with maximum
∣∣∣f(ζk)

∣∣∣
≤

√√√√n−1∑
j=0

f(ζk)f(ζk) · x(ζj)x(ζj)

=
∣∣∣f(ζk)

∣∣∣ ·
√√√√n−1∑

j=0

x(ζj)x(ζj)

=
∣∣∣f(ζk)

∣∣∣ · ‖x‖2
You easily check that the bound is reached forx̂ = ~ek∥∥∥(f(ζ0) · x(ζ0), . . . , f(ζn−1) · x(ζn−1)

)T∥∥∥
2

=
∥∥∥f(ζk) · ~ek

∥∥∥
2

=
∣∣∣f(ζk)

∣∣∣ · ‖~ek‖2
=

∣∣∣f(ζk)
∣∣∣ · ‖x̂‖2

We see that both ways lead to the same result.
The kth unit vector in the frequency space is associated with a harmonic oscillation with the

frequency2πk/n.

xmax =
(
ζ0, ζk, ζ2k, . . . , ζ(n−1)k

)T

That means that the norm bounds can always be reached with a harmonic oscillation of a specific
frequency.

What we have derived as norm for the filter operation performed byf still depends on the signal
length. To overcome this problem we have to extend the search for a maximum to different signal
lengths ofn. We slightly expand the meaning ofF to the signal length independent filter operation
performed by convoluting withf :

Because of (2.1.1) it is

‖F‖2 =
∥∥∥F̂∥∥∥

2

= sup
{

max
{∣∣∣f(e−2πik/n)

∣∣∣ : k = 0, . . . , n− 1
}

: n ∈ N
}
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Substituter := k/n

= sup
{∣∣f(e−2πir)

∣∣ : r ∈ Q ∩ [0, 1)
}

|x| , f, ex are continuous inC

= sup
{∣∣f(e−2πir)

∣∣ : r ∈ R ∩ [0, 1)
}

= sup {|f(z)| : z ∈ C ∧ |z| = 1}

f is a polynomial and thus continuous inC

= max {|f(z)| : z ∈ C ∧ |z| = 1}

As shown in figure2.1we can interpret this as the search for a maximum of|f(z)| on the complex
unit circle.

i

1

ζ1

ζ2

ζn−1

n− 1 0 1 2 k

∣∣f(ζk)
∣∣

Figure 2.1: Search for a maximum on the complex unit circle – For a signal of
the lengthn the circle is divided inton partitions. We have to determine|f(z)|
for each of then points on the circle and choose the maximum value out of them.
As the signal becomes longer, the grid will become finer. In the limit process we
have to consider the whole continuous circle.

2.1.2 Filter matrices

Working with multiple bands: Now, consider filters which are used for wavelet transformations.
More precise: We consider filters that are used in each transformation step. Here we process the signal
with d filters rather than one filter. Usually, two filters are used for the wavelet transformation in one
dimension, i.e.d = 2. If working in two dimensions, the number of channels (associated with the sub
pictures) increases tod = 4. Eventually, every other number of filtersd is possible for more general
wavelet schemes, independent from the number of dimensions [6].

As we have seen in (2.0.2), we can get more accurate norm estimations, if we merge some consec-
utive transformation steps. MergingJ transformation steps each consisting ofdj wavelet filters can
be expressed by a single filter matrix operation with

∏J−1
j=0 dj output channels. In case of a four-filter

wavelet transformation of an image overJ levels the merging would result into a4J -filter wavelet.



18 CHAPTER 2. TRANSFORMATION NORM BOUNDS

Given a number of filtersf0, f1, . . . , fd−1, the input signalx, the d output bandsyj , you can
describe one wavelet transformation step by

y0,0 =
n−1∑
k=0

f0,kx−k

y1,0 =
n−1∑
k=0

f1,kx1−k

...
...

yd−1,0 =
n−1∑
k=0

fd−1,kxd−1−k (2.1.2)

y0,1 =
n−1∑
k=0

f0,kxd−k

y1,1 =
n−1∑
k=0

f1,kxd+1−k

...
...

which is illustrated in figure2.2, too.

f0 f1 f2 · · · f0 f1

· · ·

Inputx →

Output



Band 0:y0 →
Band 1:y1 →
Band 2:y2 →

...

Band d-1:yd−1 →

Figure 2.2: Wavelet transformation step withd filters

This representation has the disadvantage that it differs from the original filter scheme. Only every
d. output value of a specific filterfj is really used here. We can reduce the new scheme to the plain
filter scheme if we split all filtersfj and the input signalx into d sub-filtersfj,k and input bandsxk,
respectively, with0 ≤ k < d. The coefficients of the sub-filters and input bands are:

fj,k,l := fj,l·d+k

xk,l := xl·d+k
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We will not consider every coefficient explicitly, but we will work with the denotationsfj,k andxk

for the sub-filters and input bands. Unfortunately the denotationxk for thekth input band coincides
with the symbol for thekth value of the whole input signalx. Since we will no longer consider the
input signal as one object, we mean thekth input band when writingxk from now on.

With this convention we can rewrite the indexed equations (2.1.2) into one matrix multiplication
with the convolution as “scalar” multiplication operation.

y0

y1
...

yd−1


︸ ︷︷ ︸

~y:=

=


f0,0 f0,1 · · · f0,d−1

f1,0 f1,1 · · · f1,d−1
...

...
...

...
fd−1,0 fd−1,1 · · · fd−1,d−1


︸ ︷︷ ︸

F :=

∗


x0

x1
...

xd−1


︸ ︷︷ ︸

~x:=

(2.1.3)

F is the so calledpolyphase matrix.
Let us find an expression in the frequency space equivalent to (2.1.3). We introduced~x which

contains all input bands, in each component one of thed bands. Because of this one could imagine~x
as a matrix, but this is disadvantageous, because one would not have an explanation forF ∗ ~x then.
We better imagine~x as a vector consisting of polynomials. Then~x(z) contains the amplitudes of the
frequency associated withz for each band. We can also interpret this, as if each component of~x stores
the spectrum of one band. Similar interpretations can be found for~y andF .

~x(z) := (x0(z), x1(z), . . . , xd−1(z))
T

~y(z) := (y0(z), y1(z), . . . , yd−1(z))
T

F(z) :=


f0,0(z) f0,1(z) · · · f0,d−1(z)
f1,0(z) f1,1(z) · · · f1,d−1(z)

...
...

...
...

fd−1,0(z) fd−1,1(z) · · · fd−1,d−1(z)


Since the discrete FOURIER transformation is bijective, we can consider (2.1.3) at each of the

frequenciesω = 2πk/n and get an equivalent formulation withζ := e−2πi/n:

∀k ∈ {0, . . . , n− 1} : ~y(ζk) = F(ζk) · ~x(ζk)

We put everything into one big matrix.
~y(ζ0)
~y(ζ1)

...
~y(ζn−1)

 =


F(ζ0) 0 · · · 0

0 F(ζ1) · · · 0
...

...
...

...
0 0 · · · F(ζn−1)

 ·


~x(ζ0)
~x(ζ1)

...
~x(ζn−1)

 (2.1.4)

Determining the norm bounds: Finally, we have to find the norm of the big block diagonalF(ζk)-
matrix. It is not difficult to see, that the EUCLIDean norm of the big matrix is equal to the biggest
norm among the F blocks.∥∥diag

(
F(ζ0),F(ζ1), . . . ,F(ζn−1)

)∥∥
2

= max
{∥∥∥F(e−2πik/n)

∥∥∥
2

: k = 0, . . . , n− 1
}
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We also see that the vector, where the upper bound is reached, has the form~x(ζk) · ~ek.
That means that the bound is only reached, if all input bands contain harmonic oscillations with

the same frequency but with specific phase differences and amplitude ratios.
We can formulate an identity analogous to PARSEVAL’s theorem that proves, that the operator

norm of the operation performed in (2.1.4) is equal to that of (2.1.3).

‖x‖22 = ‖x0‖22 + ‖x1‖22 + · · ·+ ‖xd−1‖22
= ‖x̂0‖22 + ‖x̂1‖22 + · · ·+

∥∥x̂d−1

∥∥2

2

=
d−1∑
j=0

n−1∑
k=0

xj(ζk)xj(ζk)

Sort by frequencies instead of bands first

=
n−1∑
k=0

d−1∑
j=0

xj(ζk)xj(ζk)

=
∥∥~x(ζ0)

∥∥2

2
+
∥∥~x(ζ1)

∥∥2

2
+ · · ·+

∥∥~x(ζn−1)
∥∥2

2

=
∥∥∥(~x(ζ0), ~x(ζ1), . . . , ~x(ζn−1)

)T∥∥∥2

2

Thus, the vector norm over all bands (of either the input or the output) is equal to the norm over the
spectra of all bands sorted by frequencies. This in turn means, that the matrix norm in the frequency
space is equal to the operator norm of our filter matrix in the time space.

We want to achieve independency from the signal length again. This is very similar to the one-
dimensional case with one filter and one input band. We want to reuseF as denotation for the signal
length independent filter matrix operation, again.

‖F‖2 = sup
{

max
{∥∥∥F(e−2πik/n)

∥∥∥
2

: k = 0, . . . , n− 1
}

: n ∈ N
}

= sup
{∥∥F(e−2πir)

∥∥
2

: r ∈ Q ∩ [0, 1)
}

= sup
{∥∥F(e−2πir)

∥∥
2

: r ∈ R ∩ [0, 1)
}

= sup {‖F(z)‖2 : z ∈ C ∧ |z| = 1}
= max {‖F(z)‖2 : z ∈ C ∧ |z| = 1}

= max

{√
λmax

(
F(z)

TF(z)
)

: z ∈ C ∧ |z| = 1

}
In the same way you find the lower norm bound of the filter matrix operation∥∥F−1

∥∥
2

= max

{√
λmax

(
F−1(z)

TF−1(z)
)

: z ∈ C ∧ |z| = 1

}

= max

{√
λmin

(
F(z)

TF(z)
)−1

: z ∈ C ∧ |z| = 1

}

= min

{√
λmin

(
F(z)

TF(z)
)

: z ∈ C ∧ |z| = 1

}−1

∥∥F−1
∥∥−1

2
= min

{√
λmin

(
F(z)

TF(z)
)

: z ∈ C ∧ |z| = 1

}
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Inversion of filter matrices: Let us observe some details of the invertibility ofF . We have seen
that one wavelet transformation step can be written as

~y = F ∗ ~x

The transformation for image preprocessing should be lossless, so that a lossless compressor can
be implemented with it. In mathematical terms: The transformation operator should be invertible, i.e.

~x = F−1 ∗ ~y

It simplifies theory and implementation, if one can use the same structure for the analysis and
synthesis transformation. In other words, we are interested in thoseF ’s whereF−1 is a filter matrix,
too, and it holds

F−1 ∗ F = I

With a determinant that uses the convolution of filters as multiplication, the determinant product
theorem holds.

det(I) = det
(
F−1 ∗ F

)
1 = det

(
F−1

)
∗ det (F)

BothdetF−1 anddetF are polynomials. Since we work with filters of finite length (finite impulse
response filters, FIR), factorization of 1 into polynomials is only possible if the factors are monomials.
(This is analogous to the case of2×2 matrices presented in [4].) Let bedetF = c·zk with c ∈ C\{0}
we can eliminate the scalingc and the shiftingzk without loss of generality:

The shiftingzk can be avoided if the signal is rotated byk positions. This is no serious modifica-
tion, because the signal was assumed to be periodic. In return the rows ofF are rotatedk mod d rows

upwardly, the lastk mod d rows are divided byzb
k
dc+1 and the others are divided byzb

k
dc. With this

shifting it can be always assured thatdetF = c.
The scalingc can be removed if every filter ofF is divided by the samekth complex root ofc.

This is equivalent to the uniform amplification of the output bands byk
√
c. ThusF can always be

normalized todetF = 1. This does not change the characteristics of the output signal and may help
to balance the numerical properties of the analysis and the synthesis transformation.

With the same structure for a filter matrix operation and its reverse operation, there is no need to
distinguish between them in further explorations. The difference within the whole wavelet transform
is, that the decomposition transformation (analysis) requires the splitting of an input signal intod
bands before applying the filter matrix, whereas the matrix operation in the composition transforma-
tion (synthesis) is post-processed with the joining (interleaving) of thed output bands.

In the following sections we will consider the decomposition direction exclusively and we will
always assert, that the decomposition is invertible.

2.1.3 Filter 2× 2 matrices

We want to deduce the case of 2 filters from the previous results. Our filter matrix is now

F =
(
f0,0 f0,1

f1,0 f1,1

)
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Since we can assumedetF = 1 according to section2.1.2, the inverse matrix can be easily given.

F−1 =
(
f1,1 −f0,1

−f1,0 f0,0

)
(2.1.5)

We will switch to a shorter notation forF as used in [4]. The namesh andg for the filters were
already used in the introduction in section1.1.

P =
(
he ho

ge go

)
(2.1.6)

Note that we talk about the decomposition transformation. Because of that we had to use the tilde
denotationP̃ , g̃e, h̃e, . . . if strictly following [4], but we have omitted it for simplicity. (2.1.5) shows
that the structural difference betweenP andP̃ is even smaller than in the case of arbitrary number of
bands.

Determining the norm bounds: For determining the EUCLIDean operator norm ofP we have to

know the eigenvalues ofP
T
P .

P
T
P =

(
hehe + gege heho + gego

hohe + goge hoho + gogo

)
=:

(
a b
b c

)
(2.1.7)

The eigenvalues ofP
T
P can be obtained as zeros of the characteristic polynomial ofP

T
P :

0 = det
(
P

T
P − λI

)
= det

(
a− λ b
b c− λ

)
= (a− λ)(c− λ)− bb
= λ2 − (a+ c)λ+ ac− bb (2.1.8)

λ
(
P

T
P
)

=
1
2

(
a+ c±

√
(a+ c)2 − 4(ac− bb)

)
(2.1.9)

=
1
2

(
a+ c±

√
(a− c)2 + 4bb

)
(2.1.10)

We can see in (2.1.10) that the radicand is non-negative and that is whyλ is always real. Addi-
tionally the formulation in (2.1.9) makes clear thatλ ≥ 0. You can also derive both facts from the
general theory of matrices, however.

For simplification we want to introduce two variables which will be used frequently in this work:

p := 1
2 (a+ c) (2.1.11)

= 1
2

(
hehe + gege + hoho + gogo

)
(2.1.12)

=
1
2
‖P‖2F (FROBENIUS’ norm ofP )

q := det(P )
= hego − hoge (2.1.13)



2.1. EUCLIDEAN NORM BOUNDS 23

⇒

ac− bb = det(P T
P )

= det(P ) det(P )
= qq

⇒

0 = λ2 − 2pλ+ qq

λ = p±
√
p2 − qq (2.1.14)

λ+ := p+
√
p2 − qq

λ− := p−
√
p2 − qq

‖F‖2 =
√
p+

√
p2 − qq∥∥F−1

∥∥−1

2
=

√
p−

√
p2 − qq (2.1.15)

Remember thatp andq are functions ofz, a value on the complex unit circle which marks the
considered frequency. To find the norm of the filter matrix operation we have to search for the max-
imum λ regardingz. Since the square root expression in (2.1.14) is non-negative, it is clear that the
maximumλmax among allλ’s is aλ+ and the minimumλmin is one of the possibleλ−’s. As ex-
plained in section2.1.2, q = 1 can be adjusted for every invertible wavelet filter pair. That is why
λ+ · λ− = qq = 1 and that means thatλ+ is maximal if and only ifλ− is minimal. Sinceλ+ depends
monotonely onp, λ+ is maximal if and only ifp is maximal. One consequence is that the lower and
the upper norm bounds of a wavelet transform step are reached when a certain frequency occurs on
both input bands. They may differ in phase and amplitude, though.

An example is given in section2.1.6.

Signals where the bounds are reached: We can calculate a signal where the norm bounds are

reached by calculating the eigenvectors ofP
T
P for that z whereλ+(z) = λmax. Two cases may

occur:

1. λmin = λmax

Becauseλminλmax = 1 andλ ≥ 0 it must beλmax = 1 and the characteristic polynomial is

(λ − 1)2. According to (2.1.8) it follows b = 0 andP
T
P = I. This means that any vector

is eigenvector of the eigenvalue 1. This denotes the case of unitary wavelets (orthogonalwhen
working inR).

2. λmin < λmax

That means that the multiplicity of each of the eigenvaluesλmin andλmax is below 2. Since any
eigenvalue is associated with at least one eigenvector, bothλmin andλmax must have exactly
one eigenvector. You can easily guess it:

(d, b)T := (λ− c, b)T =
(

1
2

(
a− c±

√
(a− c)2 + 4bb

)
, b

)T

and this is the only one, when ignoring any scaling.
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(
. . . , dζ−1, bζ−1,dζ0, bζ0, dζ1, bζ1, . . .

)
is the signal where the upper bound is reached ifd = λmax − c and the lower bound ifd =
λmin − c.

2.1.4 Conclusions

Balance of norms: An interesting conclusion is that if the polyphase determinant is normalized to 1
the geometrical average ofλmin andλmax (

√
λminλmax) is 1. That means that the lower and upper

bounds are balanced or in other words that the transformation does not change the norm of the signal
on average.

Invertibility: You can also verify invertibility conditions with (2.1.14). According to (2.1.15) it
holdsλmin = 0⇔

∥∥F−1
∥∥−1

2
= 0. We will show thatλmin = 0 is equivalent to singularity ofF .

1. “⇒”

λmin = 0 ⇒ ‖F‖2 = 0
⇒ ∃x : ‖x‖2 = 1 ∧ ‖Fx‖2 = 0
⇒ ∃x : x 6= 0 ∧ Fx = 0
⇒ F is not invertible

2. “⇐”
LetF be non-invertible, which means that for some differentx, y it is

Fx = Fy

⇒ 0 = Fx− Fy | F is linear

= F · (x− y)
0 = ‖F · (x− y)‖2
≥

√
λmin · ‖x− y‖2

Becausex 6= y it is x− y 6= 0 and‖x− y‖2 > 0, thusλmin = 0.

Indeed, singularity ofF is equivalent toλmin = 0 which is equivalent toq = 0 for somez because
of (2.1.14). This coincides with our observation in section2.1.2, that the determinant of an invertible
polyphase matrix can only be a monomialc · zk with c 6= 0, |z| = 1.

Unitarity: You can also derive the condition for unitarity (orthogonality if working inR) of F ,

which is already known from [3], theorem 10.1.6, that meansFTF = I. In case of two wavelet filters
you get
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hehe + gege = 1
hoho + gogo = 1 (2.1.16)

hohe + goge = 0

Because of (2.1.11) and (2.1.14) this is equivalent to

FTF = I ⇔ p = 1 ∧ qq = 1

Because of our conventions,q = 1 is always ensured, so thatp = 1 is the important criterion.

Unitarity and symmetry: Additionally, we can derive from (2.1.16) the fact, that the Lazy wavelet
(which is associated with the identity matrix as polyphase matrix,P = I) is the only symmetric
unitary two-channel wavelet with an odd number of filter taps. Note that this situation is different
from the one considered in [3], theorem 8.1.4, where filters with even numbers of taps are considered.
Therefore the result found there is the HAAR wavelet.

We can prove our statement in two ways:
One possibility is to write down the coefficients ofhehe+gege, compare them with(. . . , 0,1, 0, . . . )

and induce from the outer to the inner coefficients, that all coefficients of bothhe andge have to be
zero, except ofhe,0 which is 1.

The other way can be written more formally:
Let he, ho, ge, go be symmetric in the sense that

he(z) = he(z) ge(z) = ge(z) · z−1

ho(z) = ho(z) · z go(z) = go(z)
(2.1.17)

hehe(z) + gege(z) = 1 | symmetry ofhe, ge

h2
e(z) + zg2

e(z) = 1

h2
e(z

2) + z2g2
e(z

2) = 1(
he(z2) + izge(z2)

) (
he(z2)− izge(z2)

)
= 1 (2.1.18)

We know that 1 can be factored into monomials only, that means

he(z2) + izge(z2) = czk

he(z2) has only even exponents forz, whereasizge(z2) has only odd exponents. This means one
of he andge must be zero and the other a monomial. This leads to two cases:

1. he(z2) = 0
(2.1.18) ⇒ z2g2

e(z
2) = 1 ⇒ zge(z2) = ±1 which is obviously impossible, becausezge(z2)

contains only odd exponents ofz.

2. izge(z2) = 0
(2.1.18)⇒ h2

e(z
2) = 1⇒ he(z2) = ±1⇒ he(z) = ±1 which is what we have claimed.

The same strategy can be used to conclude thatho(z) = 0 ∧ go(z) = ±1.
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2.1.5 Approximation of bounds for 2-filter wavelets

Transform z to real axis: In section2.1.3 we found out that we have to maximizep(z) on the
complex unit circle in order to maximizeλ+(z) and to minimizeλ−(z). Sincep is a polynomial we
can do this by locating the zeros of the derivative ofp. A problem that remains is that we have to
differentiate along the circle.

One possibility to fulfill this restriction, is to considerz as a function of the angleω:

z = eiω

The derivative ofp regardingω is a polynomial inz again:

d
dω

p(z) =
d

dω

∑
k∈Z

pkz
k

=
∑
k∈Z

pk
d

dω
eikω

=
∑
k∈Z

pkike
ikω

= i
∑
k∈Z

kpk · zk

We have to find all complex zeroszj of d
d ωp(z). From allzj that are on the complex unit circle

(|zj | = 1), the one with maximalp(zj) is the one we need.
Calculation may be simplified, if we reduce our problem to a function on the real domain. We can

do this by projectingp(z) on the plane spanned by the real axis and the value axis. The symmetry ofp
assures that corresponding values on both half circles are equal. We simply use the real part ofz and
rewrite the polynomialsp andq to depend from it. As sketched in figure2.3 the values forz = eiω

for ω ∈ [−π, 0] are mapped tor ∈ [−1, 1].

r := <(z)
= 1

2(z + z)
∣∣ |z| = 1⇒ z = z−1

= 1
2(z + z−1)

p̃(r) := p(z) (2.1.19)

q̃q(r) := qq(z)

Sincep and qq are symmetric polynomials it is possible to determine the coefficients for the
polynomials inr if we start on the outermost coefficients ofp and qq, then subtract the foundr-
powers expressed inz, then iterate on the remaining polynomial. Themaple procedure in figure2.4
shows the details.

Find extrema: Now we have to find the global extrema of the real polynomialp̃ in the range[−1, 1].
We have to search for the real zeros{r0, r1, . . . , rm−1} of d

d r p̃(r), wherem denotes the number of
real zeros. For simplification we introduce

s(r) :=
d
d r

p̃(r)
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1

i

z

p(z)

−1 0 1 r

p̃(r)

Figure 2.3: The transformation fromz to r corresponds to the projection of the
complex unit circle onto the real axis.

transformZ2R := proc(pp, z, r)
localp, q, c, k;
p := pp ;
q := 0 ;
while 0 < degree(p) do

if degree(p, z) + ldegree(p, z) 6= 0 then
ERROR(“Non-symmetric exponents”)

fi;
if lcoeff(p, z) 6= tcoeff(p, z) then

ERROR(“Non-symmetric coefficients”)
fi;
c := lcoeff(p, z) ;
k := degree(p, z) ;

p := p− expand(c× (z + 1/z)k) ;

q := q + c× (2× r)k

od;
q := q + p ;
RETURN(q)

end

Figure 2.4: maple procedure for converting a polynomial ofz on the complex
unit circle into a polynomial ofr ∈ [−1, 1]
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Further on we have to take into account, that the global maximum might be at the borders of[−1, 1].
Thus it holds that

max
z∈C ∧ |z|=1

p(z) = max
r∈R∩[−1,1]

p̃(r)

= max {p̃(r) : r ∈ {−1, 1, r0, r1, . . . , rm−1}}

In our software package the search for zeros is performed by a NEWTON-MAEHLY iteration [19]
which calculates all zeros simultaneously. Letn be the degree ofs (m ≤ n) and

{
r∗0, r

∗
1, . . . , r

∗
n−1

}
the set of approximations of the zeros ofs(r). We choose one zero of them, sayr∗n−1 and divides
by a polynomials∗ which consists of all other approximated zeros and run a NEWTON iteration on
this quotient functiont := s

s∗
. If the approximations of the other zeros are good,t will be almost

linear, otherwiset is a function that has the same zeros ass and additionally some singularities at the
approximated zeros.

s∗(r) :=
n−2∑
k=0

(r − r∗k)

Using the shorthandr = r∗n−1 the NEWTON iteration step for refining the approximationr is:

r := r − t(r)
t′(r)

where t
t′ can be simplified as follows:

t

t′
=

(s/s∗)
(s/s∗)′

=
s

s∗
· s∗2

s′s∗ − ss∗′

=
ss∗

s′s∗ − ss∗′

=
s

s′ − s · s
∗′

s∗

Because of the known factorization representation ofs∗ and the differentiation rule for products,
s∗′

s∗
can also be simplified:

s∗′(r)
s∗(r)

=
n−2∑
k=0

1
r − r∗k

The complete NEWTON iteration step is then:

r := r − s(r)
s′(r)− s(r) ·

∑n−2
k=0

1
r−r∗k︸ ︷︷ ︸

∆r:=

s(r) and s′(r) can be calculated with HORNER’s scheme. To ensure that exactlyn zeros can
be found, the algorithm is implemented with complex numbers. The iteration will be started with



2.1. EUCLIDEAN NORM BOUNDS 29

quite random values, since only a pair of equal values is problematically. When we choose one
approximationr∗ out of a pair of equal approximationsr∗j = r∗k, it is r∗ − r∗k = 0, 1

r∗−r∗k
= ∞ and

thus∆r = 0. This means that the iteration will not changer, independent from whetherr is a good
approximation or not. Furthermore not all of the initial values will be chosen to be real, otherwise the
iteration will produce real values exclusively and thus can not find non-real zeros.

To find all zeros of a polynomial, the zeros are selected successively from
{
r∗0, r

∗
1, . . . , r

∗
n−1

}
to do

an iteration for improving the approximation. This is repeated again and again until the approximated
zeros do not change noticeable anymore or|s(r)| falls below a given limit.

2.1.6 Example: Bounds for CDF-2,2 wavelet

The CDF-2,2 should serve as an example wavelet for which we want to determine the norm bounds.
Remember, because we are talking about analysis transformation but omitted the tilde for filter nota-
tion, the filtersh andg given here, are not the ones used in the introduction in section1.1.

h := 1
8( −1 2 6 2 −1 )

g := 1
2( −1 2 −1 )

he := 1
8( −1 6 −1 )

ge := 1
2( −1 −1 )

ho := 1
4( 1 1 )

go := ( 1 )

Remember, that the the multiplication of polynomials is equal to the convolution of their coeffi-
cients (section1.2). The required polynomial products evaluate to:

hehe = 1
64( 1 −12 38 −12 1 )

gege = 1
4( 1 2 1 )

hoho = 1
16( 1 2 1 )

gogo = ( 1 )
(2.1.12)⇒ p = 1

128( 1 8 142 8 1 )
p̃ = 1

32( 35 4 1 )

p̃ is derived fromp according to figure2.4:

p(z) =
1

128
(z−2 + 8z−1 + 142 + 8z1 + z−2)

r2 =
1
4
(z−2 + 2 + z2) p(z) =

1
32
r2 +

1
128

(8z−1 + 140 + 8z1)

r =
1
2
(z−1 + z1) p(z) =

1
32

(r2 + 4r) +
140
128

p̃(r) =
1
32

(r2 + 4r + 35)

We see that the coefficient of the square term ofp̃(r) = 1
32(35 + 4r + r2) is positive, that is why

p is convex, which means that its maximum is at the borders of[−1, 1].

p̃max = max {p(−1), p(1)} = max
{

1,
5
4

}
=

5
4

p̃max = pmax ⇒

(2.1.14)⇒ λmax/min =
5
4
±

√(
5
4

)2

− 1 =
5
4
± 3

4
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λmax = 2 ‖F‖2 =
√

2

λmin =
1
2

∥∥F−1
∥∥−1

2
=

1√
2

Which means that

∀x :
1√
2
‖x‖2 ≤ ‖Fx‖2 ≤

√
2 ‖x‖2

We are also interested in the signals, where these bounds are reached. We follow the solution
sketched in section2.1.3.

p is maximal forr = 1⇔ z = 1 so we calculateb, c, d for thisz according to (2.1.7):

b = ho(1)he(1) + go(1)ge(1) = −3
4

c = ho(1)ho(1) + go(1)go(1) =
5
4

d ∈
{

1
2
, 2
}
− 5

4
=
{
−3

4
,
3
4

}

We scale this by−4
3 for simplification and obtain the two signals:

(. . . , −1, 1, −1, 1, −1, 1, . . . ) hits the upper bound
(. . . , 1, 1, 1, 1, 1, 1, . . . ) hits the lower bound

2.2 Symmetric wavelets with close norm bounds

We will continue on concentrating on wavelets with two filters.
In section2 we have discussed, why it is important to have close lower and upper norm bounds.

In the case of unitary wavelets the bounds are equal, which is obviously the optimum. Another
common restriction is the request for symmetric wavelets, because they have good visual qualities.
Unfortunately it is not possible to find symmetric unitary wavelets other than the Lazy wavelet, as
shown in section2.1.4. Nevertheless, we will try to construct symmetric wavelets that have bounds
that are as close as possible in a certain sense.

Similar approaches were already explored:

1. In section 8.1.1 of [3] orthogonal wavelets are constructed which are almost symmetric. Since
symmetry is equivalent to linear phase behaviour, it is tried there to minimize the deviation from
linear phase behaviour of the filters.

2. In section 8.3.5 of [3] (also in section 6.C.1 of [2]) an example of a symmetric wavelet is given,
that is almost orthogonal. It is based on the Laplacian filter.

We will follow another approach, that utilizes the knowledge of how to determine the norm bounds
for a single wavelet transformation step.

2.2.1 Optimization usingCHEBYSHEV polynomials

To prevent an optimization approach from resulting in the Lazy wavelet we have to set restrictions
additional to the symmetry. A possible choice is to fix the filter length. If we work with the filter

f = (fm, fm+1, . . . , fn−1, fn)
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the number of taps off might be less thann−m althoughf hasn−m+1 coefficients.|f | < n−m
meansfm = 0 or fn = 0. Thus we must assurefm 6= 0 andfn 6= 0. But since the maximum norm
of p, which is the measurement for close norm bounds, depends continuously on the filter coefficients,
it makes no sense to exclude the set of points withfm = 0 or fn = 0 which has no interior. That is
the reason why it seems to be better to fixfm andfn on some suitable values.

Fixing the outermost coefficients, then searching for wavelets with some inner coefficients that
minimize the norm bound difference will safely exclude the Lazy wavelet. But when constructing
new wavelets, the desired characteristics like interpolating behaviour (see below) additional to close
norm bounds may not be bounded to specific values for the outermost coefficients. In other words,
we are trying to construct wavelets that have naturally close norm bounds (like unitary wavelets), but
it is not sure that wavelets chosen from this family under certain further aspectsA have optimal norm
bounds in the sense, that from all wavelets that fulfillA the ones we are about to construct here will
have closest possible norm bounds!

We see that the outermost coefficients ofp depend on the outermost coefficients of the longer
filter out of h andg, or on both of them, if the filters have equal size. Thus fixing the outermost
coefficients ofh andg leads to fixing the outermost coefficient ofp. Now, we ask for values of the
other coefficients ofp that lead to a minimal maximum norm ofp. Polynomials that have a minimal
global maximum for a fixed leading coefficient are known as CHEBYSHEV polynomials [1, 5, 19],
which are introduced in the context of real numbers, usually. Fortunately, CHEBYSHEV polynomials
have a much simpler representation inz, that can be obtained if we do the reverse argument transfor-
mation (i.e. fromr to z) to the one derived in section2.1.5. The polynomial inz corresponding to the
nth CHEBYSHEV polynomial is

tn(z) = 1
2(z−n + zn)

As you can easily see it has exactlyn maxima each with a value of 1.
The proof that CHEBYSHEV polynomials are those with minimal global maximum depending on

the leading coefficient is usually done in two steps: First it is shown that all local minima and maxima
have the same magnitude. The second step is to show, that any other polynomial of the same degree
and leading coefficient must have at least the global maximum as the corresponding CHEBYSHEV

polynomial. Refer to [5, 19] for the detailed proof.
Now we would like to know, if the requirements forp (e.g. symmetry andp2 ≥ qq) allow us to

setp to a function basing on a CHEBYSHEV polynomial.
We have to preserve thatp2 ≥ qq because it assures thatλ is always real. We can setp to tn scaled

by a real coefficient and add a sufficient big offset. We can also allowtn to be rotated on the complex
unit circle. This can be described with a generalized form

tn(µ, z) := 1
2(µz−n + µzn)

|µ| is the scaling factor andarg (µ) the rotation angle. Now let

p(z) := tn(µ, z) + |µ|+ 1 | |tn(µ, z)| ≤ |µ| (2.2.1)

≥ 1 = q(z)

The balance of the maxima remains, of course.
It is still not clear if any filter pair exists, that leads to polynomialsp of this form, but in the next

section we will derive an example set. Maybe such wavelets got another name in the wavelet literature
already, but here wavelets withp(z) = 1

2(µz−n +µzn)+ |µ|+1 will be called CHEBYSHEV wavelets.
Without knowing any filter pair that is associated with ap of the required form, we can already

determine the bounds of CHEBYSHEV wavelets:
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It is p(z) ≤ 2 |µ|+ 1 with equality e.g. for|µ| · zn = µ.⇒

(2.1.15)⇒ ‖F‖22 = λmax = pmax +
√
p2
max − qq

= 2 |µ|+ 1 +
√

(2 |µ|+ 1)2 − 1

= 2 |µ|+ 1 +
√

4 |µ|2 + 4 |µ|

= 2 |µ|+ 1 + 2
√
|µ| (|µ|+ 1)

=
(√
|µ|+ 1 +

√
|µ|
)2

‖F‖2 =
√
|µ|+ 1 +

√
|µ|∥∥F−1

∥∥−2

2
= λmin = pmax −

√
p2
max − qq

= 2 |µ|+ 1− 2
√
|µ| (|µ|+ 1)∥∥F−1

∥∥−1

2
=

√
|µ|+ 1−

√
|µ|

2.2.2 Special case: Filter length 5 and 3

As an exercise we will construct CHEBYSHEV wavelets for a pair of filters with lengths 5 and 3 like
the CDF-2,2 wavelet has. For more generality we will start with complex filter coefficients. Note that
h0 andg0 are real nevertheless, because of the symmetry ofh andg.

The coefficient identifiers are chosen in a way that emphasizes the symmetry, but it does not
reflect the indices of the vector components. The vector component indices are given by the stressed
component which has index zero, as supplied before.

h := ( h2 h1 h0 h1 h2 )
g := ( g1 g0 g1 )

he := ( h2 h0 h2 )
ge := ( g1 g1 )

ho := ( h1 h1 )
go := ( g0 )

hehe = ( h2
2 2h2h0 h2

0 + 2h2h2 2h2h0 h2
2 )

gege = ( g2
1 2g1g1 g1

2 )
hoho = ( h2

1 2h1h1 h1
2 )

gogo = ( g2
0 )

hego = ( h2g0 h0g0 h2g0 )
hoge = ( h1g1 h1g1 + h1g1 h1g1 )

p andq are computed as defined in (2.1.12) and (2.1.13):

2p = (h2
2, 2h2h0 + h2

1 + g2
1,h

2
0 + 2h1h1 + 2h2h2 + g2

0 + 2g1g1, 2h2h0 + h1
2 + g1

2, h2
2)

(2.2.2)

q = (h2g0 − h1g1,h0g0 − (h1g1 + h1g1), h2g0 − h1g1) (2.2.3)
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Determine filter coefficients: Now we identifyp with the appropriate CHEBYSHEV polynomial as
defined in (2.2.1). We abbreviate the CHEBYSHEV polynomialt2(µ, ◦) ast2(µ):

2p = 2 · t2(µ) + 2 · (0, 0, |µ| + 1, 0, 0)
= (µ, 0,2 |µ| + 2, 0, µ) (2.2.4)

Comparison of the coefficients ofp in (2.2.2) and (2.2.4):

p−2 : µ = h2
2

|µ| = h2h2 (2.2.5)

p−1 : 0 = 2h2h0 + h2
1 + g2

1

p0 : 2 |µ|+ 2 = h2
0 + 2h1h1 + 2h2h2 + g2

0 + 2g1g1
2 = h2

0 + 2h1h1 + g2
0 + 2g1g1 (2.2.6)

p1 andp2 need not to be considered, since all polynomials involved here are symmetric.
Remember thatq is normalized to 1:

q = (0,1, 0) (2.2.7)

Comparison of the coefficients ofq in (2.2.3) and (2.2.7):

q−1 : 0 = h2g0 − h1g1

q0 : 1 = h0g0 − (h1g1 + h1g1) (2.2.8)

Multiply (2.2.8) with 2 and subtract it from (2.2.6). We respect thathe = he ⇒ h0 ∈ R ∧ go =
go ⇒ g0 ∈ R and obtain:

0 = p0 − 2 |µ| − 2q0
= h2

0 + 2h1h1 + g2
0 + 2g1g1 − 2h0g0 + 2h1g1 + 2h1g1

= (h0 − g0)2︸ ︷︷ ︸
∈R,≥0

+ 2(h1 + g1)(h1 + g1)︸ ︷︷ ︸
∈R,≥0

⇒

0 = h0 − g0
0 = h1 + g1

h0 = g0 (2.2.9)

h1 = −g1 (2.2.10)

We establish that CHEBYSHEV wavelet filters of the lengths (5,3) have an obvious structure: Ex-
cept of the outermost coefficient, the corresponding coefficients of the filtersh andg have the same
or an alternating value.

Using this, the comparison ofq’s coefficients can be simplified to:

0 = h0h2 + h2
1 (2.2.11)

1 = h2
0 + 2h1h1 (2.2.12)
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We note that the same equations could be obtained by simplifying the comparison ofp’s coefficients.
Further simplifications can be made if we restrict{h1, h2, µ} ⊂ R. Without it there may be more

or even an infinite number of complex solutions.

(2.2.11)⇒ h2
1 = −h0h2

(2.2.12)⇒ 1 = h2
0 + 2h2

1 (2.2.13)

= h2
0 − 2h0h2

0 = h2
0 − 2h0h2 − 1

h0 = h2 ±
√
h2

2 + 1

h0+ := h2 +
√
h2

2 + 1 > 0

h0− := h2 −
√
h2

2 + 1 < 0

(2.2.11)⇒ h2
1 = −h0h2

h1 = ±
√
−h0h2

h1 =

{
±
√
−h0− · h2 : h2 ≥ 0

±
√
−h0+ · h2 : h2 < 0

Now every coefficient is determined. We see that for any given realh2 four CHEBYSHEV-(5,3)
wavelets with real coefficients exist. Thus we constructed a whole family of wavelets which depends
mainly on one parameter.

Forh2 = 0 we obtain the Lazy wavelet, which is the only orthogonal wavelet in this family.

‖F‖2 =
√
µ+ 1 +

√
µ

=
√
h2

2 + 1 + |h2|

=

{
h0+ : h2 ≥ 0
−h0− : h2 < 0

= max {h0+,−h0−}∥∥F−1
∥∥−1

2
=

√
µ+ 1−√µ

=
√
h2

2 + 1− |h2|

=

{
−h0− : h2 ≥ 0
h0+ : h2 < 0

= min {h0+,−h0−}

The signal where the norm bounds are touched: What does the signal look like, where norm

bounds are reached? We calculate the eigenvector ofP
T
P as explained in section2.1.3using the

variablesa, b, c, defined in (2.1.7).
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a = (h2
2, 2h0h2 + g2

1,h
2
0 + 2h2h2 + 2g1g1, 2h0h2 + g1

2, h2
2)

b = (h1, h1) ∗ (h2,h0, h2) + (g0) ∗ (g1, g1)
= (h1h2,h1h2 + h1h0, h1h0 + h1h2, h1h2) + (g0g1, g0g1)
= (h1h2,h0h1 + h1h2 + g0g1, h0h1 + h1h2 + g0g1, h1h2)

c = (h2
1,2h1h1 + g2

0, h1
2)

h0
(2.2.9)= g0 ∧ h1

(2.2.10)= −g1 ⇒

a = (h2
2, 2h0h2 + h2

1,h
2
0 + 2h2h2 + 2h1h1, 2h0h2 + h1

2
, h2

2)
b = (h1h2,h1h2, h1h2, h1h2)

c = (h2
1,h

2
0 + 2h1h1, h1

2)

(2.2.11) ∧ (2.2.12)⇒

a = (h2
2,−h2

1,1 + 2h2h2,−h1
2
, h2

2)

c = (h2
1,1, h1

2)

a− c = (h2
2,−2h2

1,2h2h2,−2h1
2
, h2

2)

For thosez wherep is maximal (ifµ 6= 0 then it is maximal forz−2 = µ
|µ|

(2.2.5)= h2

h2
) this results in

b = 2h1h2 + 2h1h2z
−1 (h2 = h2z

2)
= 2h2(h1 + h1z

−1)

bb = 4h2h2(h2
1z + h1

2
z−1 + 2h1h1)

a− c = 4h2h2 − 2(h2
1z + h1

2
z−1)

(a− c)2 + 4bb = 4
(
(2h2h2 − (h2

1z + h1
2
z−1))2 + 4h2h2(h2

1z + h1
2
z−1 + 2h1h1)

)
= 4

(
(2h2h2)2 + (h2

1z + h1
2
z−1)2 + 8h2h2h1h1

)

Further simplifications can be done, if we switch back to realh1, h2 again and letz = 1:

(a− c)2 + 4b2 = 16(h2
2 − h2

1)
2 + 64h2

1h
2
2

= 16(h2
2 + h2

1)
2

λ− c = 1
2

(
a− c±

√
(a− c)2 + 4b2

)
= 2h2

2 − 2h2
1 ± 2(h2

2 + h2
1)

We obtain two eigenvectors(
4h2

2, 4h1h2

)T ∼ (h2, h1)
T for the upper bound(

−4h2
1, 4h1h2

)T ∼ (−h1, h2)
T for the lower bound

A lifting step factorization can be made in a general form, too. Please refer to section2.3 for a
generic factorization of symmetric wavelet filter pairs of the length (5,3).
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2.2.3 CDF-2,2 counterpart

Since the linear interpolation as prediction of the H band seems to be a good choice for many images
and we want to combine this with close norm bounds, we will try to construct a symmetric linear
interpolating CHEBYSHEV wavelet.

Linear interpolation is expressed byg = c ·(−1, 2,−1) or equallyg0 = −2g1 (figure2.5). This in
turn is equivalent toh0 = 2h1 because of the simplified structure we observed in (2.2.9) and (2.2.10).

xe,1

xo,1 xe,2

x

Figure 2.5: How one can predict the values on the H band (odd indexed sig-
nal values) by linear interpolation in the L band (even indexed signal values) –
Linear interpolation betweenxe,1 andxe,2 for the positiono, 1 means calculat-
ing 1

2 (xe,1 + xe,2). If the prediction is good it holdsxo,1 ≈ 1
2 (xe,1 + xe,2) and

xo,1 − 1
2 (xe,1 + xe,2) will be quite small. The filter corresponding to this term is

(−1
2 , 1,−

1
2).

(2.2.13)⇒ 6h2
1 = 1

h1 =

√
1
6

h0 =

√
2
3

(2.2.11)⇒ h2 = −
√

1
24

h :=
√

1
24 ( −1 2 4 2 −1 )

g :=
√

1
24 ( −2 4 −2 )
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We immediately get the signals

(. . . −1, 2, −1, 2, −1, 2, . . . ) for the upper bound
√

3
2

(. . . 2, 1, 2, 1, 2, 1, . . . ) for the lower bound
√

2
3

Precaution: With this construction we obtained wavelet filter pairs that have as close as possible
norm bounds dependent on the outermost coefficient ofh. This was implicitly done by selecting
CHEBYSHEV polynomials forp. Then we have chosen this coefficient to get linear interpolation byg.
The more natural question is to ask for all filtersg with linear interpolation (i.e.c · (−1, 2,−1) for
anyc 6= 0) and to ask for the filter pair of this type which has closest norm bounds. Both approaches
are different, the answers are different as well. Later in section2.3 we will construct wavelet filter
pairs with the same lengths (5,3) which give the answer to the second question.

Practical results achieved with the CHEBYSHEV wavelet constructed here are presented in section
3.2.1, where it is compared to weighted variants of the CDF-2,2 wavelet.

2.2.4 Generalization to other filter lengths

Let us explore what CHEBYSHEV wavelets look like if extended to other lengths. When deriving
the connections between the coefficients of CHEBYSHEV wavelet filters, we found the interesting
dependencies (2.2.9), (2.2.10) between the coefficients ofh andg by using the fact, that 0 is the only
complex number with magnitude 0. Is it possible to extend this trick to other filter lengths?

First we have to make some observations about the filter lengths of reversible (bi-orthogonal)
symmetric wavelets as in (2.1.17).

1 = detP
= hego − hoge

hego − 1 = hoge

|hego − 1| = |hoge|
hego is symmetric⇒ |hego| = |hego − 1| ∨ hego = 1

hego = 1 is not very interesting,

we will continue to considerhego 6= 1
|hego| = |hoge|

|he|+ |go| = |ho|+ |ge|

Because of the symmetry it is

2 | |he| ∧ 2 | |go| ∧ 2 - |ho| ∧ 2 - |ge| (2.2.14)

We note that there is always one of the filtershe, ho, ge, go that is strictly longer than the others,
in other words: There can not be two longest filters.

Proof. The proof is done indirectly:
Assumed that two filters have the same length and no other filter is longer, due to the parity (2.2.14)

it can only be|he| = |go| or |ho| = |ge|. Without loss of generality we assume|he| = |go|. Because
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of the parity of the filter lengths it is|he| 6= |ho| ∧ |he| 6= |ge| and according to our assumption that
he is the longest filter, this means|he| > |ho| ∧ |he| > |ge|. This leads to|he|+ |go| > |ho|+ |ge|
and is a contradiction to the equality which we have established at the beginning.

Let f be the longest filter out of{he, ho, ge, go}. Note that in casege is the longest filter, we will
setf to the mirroredge in order to better fit into the scheme. Letn be the highest index andm the
lowest index off . Since any other filter must be shorter at least by one coefficient,n andm do also
bound the indices of all the other filters. The following four cases are possible, the figure shows all
filters at their maximum possible length compared to the longest filter:

m 0 n m 0 n
m′ n′ m′ n′

m′′ n′′ m′′ n′′

he ( ∗ ∗ ∗ ? ∗ ∗ ∗ )=̂f ( ∗ ∗ ? ∗ ∗ )
ho ( ∗ ∗ ∗ ? ∗ ∗ ) ( ∗ ∗ ∗ ? ∗ ∗ )=̂f
ge ( ∗ ∗ ? ∗ ∗ ∗ ) ( ∗ ? ∗ ∗ )
go ( ∗ ∗ ? ∗ ∗ ) ( ∗ ∗ ? ∗ ∗ )

m 0 n m 0 n
m′ n′ m′ n′

m′′ n′′ m′′ n′′

he ( ∗ ∗ ? ∗ ∗ ) ( ∗ ∗ ? ∗ ∗ )
ho ( ∗ ∗ ? ∗ ) ( ∗ ∗ ∗ ? ∗ ∗ )
ge ( ∗ ∗ ? ∗ ∗ ∗ )=̂f ( ∗ ∗ ? ∗ ∗ ∗ )
go ( ∗ ∗ ? ∗ ∗ ) ( ∗ ∗ ∗ ? ∗ ∗ ∗ )=̂f

We observe that it is alwaysn′ = −m′ andn′′ = 1−m′′.
We repeat the strategy that was successful in section2.2.2and look at the absolute coefficient of

p first:

2p0 =
∑

j

he−jhej + ho−jhoj + ge−jgej + go−jgoj

Apply the definition of conjugated filters (1.2.1)

=
∑

j

he,jhe,j + ho,jho,j + ge,jge,j + go,jgo,j

2 |µ| != fnfn + fmfm = 2fnfn because of symmetryfn = fm

2 + 2 = 2p0 |µ| = 2 |µ|+
n′∑

j=m′

he,jhe,j +
−n′∑

j=−m′

go,jgo,j +
n′′∑

j=m′′

ho,jho,j +
−m′′∑

j=−n′′

ge,jge,j

= 2 |µ|+
n′∑

j=m′

(
he,jhe,j + go,−jgo,−j

)
+

n′′∑
j=m′′

(
ho,jho,j + ge,−jge,−j

)
(2.2.15)
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1 = q0 =
∑

j

he,jgo,−j − ho,jge,−j

=
n′∑

j=m′

he,jgo,−j −
n′′∑

j=m′′

ho,jge,−j (2.2.16)

Now we can build a complete square fromp0 andq0:

0 = 2p0 − 2 |µ| − (q0 + q0)

=
n′∑

j=m′

(he,j − go,−j)(he,j − go,−j)︸ ︷︷ ︸
∈R,≥0

+
n′′∑

j=m′′

(ho,j + ge,−j)(ho,j + ge,−j)︸ ︷︷ ︸
∈R,≥0

⇒

∀j ∈
{
m′, . . . , n′

}
: 0 = (he,j − go,−j)(he,j − go,−j)
he,j = go,−j = goj

∀j ∈
{
m′′, . . . , n′′

}
: 0 = (ho,j + ge,−j)(ho,j + ge,−j)
ho,j = −ge,−j = −gej

E.g. in the first case where the longest filter isf = he that means that

he(z) = go(z) + he,m · zm + he,n · zn (2.2.17)

ho(z) = −ge(z) (2.2.18)

Although it ism = −n here, the different variable names were left for easier carrying the results to
the remaining cases, which are similar.

We see that (2.2.17) and (2.2.18) form a necessary condition for a wavelet to be a CHEBYSHEV

wavelet.

If we carefully think over the insertion and replacement steps that were made in section2.2.2,
we note that after finding out the relations (2.2.9), (2.2.10), the coefficient comparisons ofp andq
coincided. The equations (2.2.9), (2.2.10) could be carried to other lengths – is this true for this
observation, too?

The answer is yes, and for the casef = he we can show exemplarily, that if (2.2.17) and (2.2.18)
are true then the conditions

1. p(z) = t(µ, z) + |µ|+ 1 with µ = 2pn−m = h2
e,n

2. q(z) = 1

are equivalent.
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2 · (t(µ, z) + |µ|+ 1) =
2p(z) = he(z)he(z) + ho(z)ho(z) + ge(z)ge(z) + go(z)go(z)

(2.2.18)= he(z)he(z) + go(z)go(z)− 2ho(z)ge(z)
(2.2.17)= he,nhe,n + he,mhe,m + he,nhe,m · zm−n + he,mhe,n · zn−m +

go(z)(he,m · zm + he,n · zn) +

go(z)(he,m · z−m + he,n · z−n) +

2go(z)go(z)− 2ho(z)ge(z) | − 2 · (t(µ, z) + |µ|)

Note that because of the symmetry ofhe it is

1. he,n = he,m

2. µ = h2
e,n = he,m

2 = he,mhe,n

3. |µ| = he,nhe,n = he,mhe,m

2 = go(z)(he,m · zm + he,n · zn)+

go(z)(he,m · z−m + he,n · z−n)+

2go(z)go(z)− 2ho(z)ge(z)

applygo(z) = go(z) ∧ he,m · z−m = he,n · zn ∧ he,n · z−n = he,m · zm

= 2go(z)(he,m · zm + he,n · zn) + 2go(z)2 − 2ho(z)ge(z)
= 2(he(z)go(z)− ho(z)ge(z))
= 2q(z)

Finally we obtain, that if the wavelet filtersh and g share the same coefficients according to
(2.2.17) and (2.2.18), we have to preserve only thathego − hoge = q = 1 and it follows immediately,
thatp has our special form of a CHEBYSHEV polynomialt(µ, z) + |µ|+ 1.

2.3 Linear interpolation

In section2.2.3we have tried to find (5,3)-wavelets with both linear interpolation and close norm
bounds. The CHEBYSHEV wavelets are a general approach to combine filter symmetry with close
norm bounds. So, was the selection of linear interpolating wavelets out of the class of CHEBYSHEV

wavelets optimal with respect to the bounds? We will investigate what the closest bounds with linear
interpolating (5,3)-wavelets with real coefficients possibly are.

To be sure that we construct invertible wavelets, we will construct the lifting factorization of the
requested wavelet in the next paragraph. We will see that the lifting steps depend only on two pa-
rameters if we restrict to a linear interpolating filterg. In the subsequent paragraph we will determine
values for these parameters that make the norm bounds of the wavelet as close as possible.
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General lifting factorization: Fortunately the lifting factorization (see [4] and figure3.3) of any
invertible symmetric (5,3)-wavelet can be made with the same steps, differing only in the choice of
two parameters.

From the invertibility of the wavelet follows:

1 = q

(0,1, 0) = hego − hoge

= (h2g0 − h1g1,h0g0 − (h1g1 + h1g1), h2g0 − h1g1)

comparison of the components results in

0 = h2g0 − h1g1 (2.3.1)

1 = h0g0 − (h1g1 + h1g1) (2.3.2)

The factorization starts with the last lifting step. Its lifting filtert is chosen in a way that the

outermost coefficients ofh vanish if we reverse the lifting step. Lett = (h2
g1
, h2

g1
) then we can reduce

h by g with help oft(◦2) and obtain the filters

h′ := h−

(
h2

g1
, 0,

h2

g1

)
g

= (h2, h1,h0, h1, h2)−

(
h2,

h2g0
g1

,
h2g1

g1
+

h2g1

g1
,
h2g0
g1

, h2

)

=
(

0,
1
g1

(h1g1 − h2g0),

h0g0 − (h1g1 + h1g1)

g0
+ g1 ·

(
h1

g0
−

h2

g1

)
+ g1 ·

(
h1

g0
−

h2

g1

)
,

1
g1

(h1g1 − h2g0), 0
)

(2.3.1)=

(
0, 0,

h0g0 − (h1g1 + h1g1)

g0
, 0, 0

)
(2.3.2)=

(
0, 0,

1

g0
, 0, 0

)
g′ := g

Now h′ andg′ are the filters that are present before the lifting stept is applied. Sinceg′ is still not a
constant in general, we need yet another lifting step with the filters = (g0g1, g0g1):

h′′ := h′

g′′ := g′ − (g0g1, 0, g0g1)h′

= (g1, g0, g1)− (g1, 0, g1)
= (0, g0, 0)

We obtainedh′′ andg′′ which are constants that are reciprocal to each other. With four additional
lifting steps they could be factorized into the Lazy wavelet (h′′′ = 1, g′′′ = 1) according to [4].

The full lifting sequence is:
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1. Weighting the L band with1
g0

and the H band withg0

2. Lifting from L band to H band with lifting filters = (g0g1, g0g1)

3. Lifting from H band to L band with lifting filtert = (h2
g1
, h2

g1
)

Determine the parameters: The previous thought has shown, that each of the two lifting filters has
the form(x, x) if working with real values. We start at the filters

h′′ =(0, 0,
1

a
, 0, 0)

g′′ = (0, a, 0)

and the first lifting filter is

s = (−
1

2
a2,−1

2
a2)

which does the linear interpolation, because the resulting filter

g′ = g′′ + s(◦2) · h′′

= (−
a

2
, a,−a

2
)

= a · (−
1

2
, 1,−1

2
)

has the required form.
The second lifting filter is set to

t = (b, b)

with still unknownb.
The filter pair built from these lifting steps is:

he := ( −ab
2

1
a

− ab −ab
2 )

ge := ( −a
2

−a
2 )

ho := ( ab ab )
go := ( a )

Now, our aim can be expressed by the determination of

argmin
a,b

max
r
p̃(r)

It is easy to predict that the coefficient of the square term ofp̃ (defined in (2.1.19) and (2.1.12)) is
1
8(ab)2. Thusp̃ is convex again, its maximum is either atr = −1 or r = 1 and the maximum ofp is
atz = −1 or z = 1 respectively.

max
r
p̃(r) = max {p(−1), p(1)}

To process both cases together, we will use the pair notation{a, b}. Each operation applies to both
members of the tuple. It is not really a set, because the order is important. E.g.{a, b} ≥ {c, d}means
a ≥ c ∧ b ≥ d and a relation between eithera andd or b andc is not given.
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2 {p(−1), p(1)} = 2p({−1, 1})

=
(
{1,−1} · ab+

1
a
− ab

)2

+ ({0, 2} · ab)2 + ({0,−1} · a)2 + a2

=
(
{0,−2} · ab+

1
a

)2

+ ({0, 2} · ab)2 + {1, 2} · a2

= {0, 8} · (ab)2 +
1
a2

+ {0,−4} · b+ {1, 2} · a2

= {0, 1} ·
(
8(ab)2 − 4 · b+ a2

)
+

1
a2

+ a2

= {0, 1} ·

(
2
(

2ab− 1
2a

)2

− 1
2a2

+ a2

)
+

1
a2

+ a2

equality forb =
1

4a2

≥ {0, 1} ·
(
a2 − 1

2a2

)
+ a2 +

1
a2

=
{
a2 +

1
a2
, 2a2 +

1
2a2

}

This implies

∀b : 2max {p(−1), p(1)} ≥ max
{
a2 +

1
a2
, 2a2 +

1
2a2

}
min

b
(2 max {p(−1), p(1)}) ≥ max

{
a2 +

1
a2
, 2a2 +

1
2a2

}
Because for givena, p(−1) andp(1) are minimal for the sameb, we can exchangemin andmax:

min
b

(2 max {p(−1), p(1)}) = 2 max
{

min
b
p(−1),min

b
p(1)

}
= max

{
a2 +

1
a2
, 2a2 +

1
2a2

}
Thus we will set

b =
1

4a2
(2.3.3)

for further considerations ofp(−1) andp(1). What remains is the calculation of

argmin
a

max {p(−1), p(1)}

We note that both2p(−1) = a2 + 1
a2 and2p(1) = 2a2 + 1

2a2 are convex ina, somax 2p({−1, 1})
is, too. That is why there is only one minimum and we guess, that it is reached when both terms are
equal.
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2a2 +
1

2a2
= a2 +

1
a2

a2 =
1

2a2

a4 =
1
2

a = 4

√
1
2

Because the function2(p(1)−p(−1)) = a2− 1
2a2 is monotonically increasing ina, we can verify

easily, that p(−1) < p(1) : a > 4

√
1
2

p(−1) > p(1) : a < 4

√
1
2

In other words

max {p(−1), p(1)} =

p(1) : a > 4

√
1
2

p(−1) : a < 4

√
1
2

That is why the left and right hand derivatives ofmax 2p({−1, 1}) ata = 4

√
1
2 are

2pa−(−1) = 2a− 2
a3

=
2a4 − 2
a3

∣∣ a4 < 1
2

< 0

2pa+(1) = 4a− 1
a3

=
4a4 − 1
a3

∣∣ a4 > 1
2

> 0

This proves thata = 4

√
1
2 minimizesmax 2p({−1, 1}). This means

a = 4

√
1
2

(2.3.3)⇒ b =
√

2
4

p =
3
4

√
2

λmax / min =
3
4

√
2±

√
18
16
− 1 =

3± 1
4

√
2
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λmax =
√

2 ‖F‖2 = 4
√

2

λmin =
1√
2

∥∥F−1
∥∥−1

2
=

1
4
√

2

ab =
4
√

2
4

h =
4
√

2
8

(−1, 2,6, 2,−1)

g =
1

2 4
√

2
(−1, 2,−1)

We see that the result is a CDF-2,2 wavelet weighted by4
√

2. Refer to section3.2.1for further
considerations of weighting.
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Chapter 3

Construction of image specific wavelets

3.1 Minimization of entropy

Preprocessing images with wavelet transforms is a good choice to achieve better compression rates.
The goal of transforming an image is to gain only a few values of significance, so that good compres-
sion is simply done by throwing away the less significant values. Further compression can be achieved
by quantifying the transformed values. Care must be taken that modifying wavelet coefficients does
not damage the original image visually.

A technique that saves space by quantifying values and suppressing low values and which pays
attention to the special structure of wavelet transformed images (figure3.1) is the Embedded Zero
Tree method [14, 15]. In this encoding algorithm, the wavelet transformed image is treated as a multi-
rooted directed tree. Each node of the tree corresponds to a pixel of the multi-scale representation.
The tree is defined in such a way that each nodev has either no offspring or four offspring which are
‘refinements’ of nodev.

The EZT encoding is an iterative procedure: In thejth iteration, it starts by encoding the roots
of the tree, i.e., the tree nodes in which normally most of a wavelet transformed image’s energy is
concentrated. Then for each pixel of this level, the corresponding subtree is considered. If all the
nodes of the subtree are insignificant with respect to thejth thresholdTj , then the offspring of the
pixel are not encoded and the subtree is pruned away. If the subtree is not such a zerotree with respect
toTj , the offspring are encoded and the procedure is recursively applied to the offspring. Here, a pixel
of the wavelet transformed image is calledinsignificant with respect to a thresholdTj if its magnitude
is smaller thanTj . A subtree is calledzerotree with respect toTj , if all of its nodes are insignificant
with respect toTj . [11]

Wavelet transformation is designed to produce as low as possible transformed values on the high
frequency bands HL, LH, HH, if the images are natural, which means that the assumption “neigh-
boured pixels are similar” holds in general. The lower the values on these bands are, the more often
can theEZT encoder make use of the efficient coding of a complete sub-tree as zerotree. If small
values can be obtained on a local image part over many levels, a deep sub-tree can be encoded as ze-
rotree. If the values of the high frequency bands can be made small in general, the zerotree encoding
can be applied even for small thresholdsTj .

In general, standard wavelets are used, which are constructed under some theoretical aspects and
which have proven on much example images to satisfy the criterion of high frequency bands with low
amplitude. Newer approaches (as sketched in [13]) select wavelet filters which provides the best result
for a specific image or part of it, from a discrete set of standard wavelets. Another possible extension

47
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original transformed

Figure 3.1: Structure of wavelet transformed images – Each transformed level
consists of three high frequency bands HL (right top corner), LH (left bottom),
HH (right bottom) for the scale corresponding to the level. The HL bands empha-
size vertical edges, the LH bands emphasize horizontal edges. The very small part
in the left top corner is a scaled down version of the original image. The original
image is transformed over 6 levels with the CDF-2,2 wavelet. Values with small
magnitude are white, values with big magnitude (independent from the sign) are
drawn black.

is to further divide and transform the H bands of some transformation step results. This is associated
with the concept ofwavelet packet basesandbest bases selection. Refer to [3, 9, 8] for details.

In the further considerations, we want to keep the simple scheme of dividing the input signal into
high and low frequency bands, but we will drop the restriction to predefined wavelets. This should
make it possible to react on image characteristics like intensive noise, which can not be handled
by most standard wavelets. Further on, the adaptive creation of the wavelet would save an explicit
algorithmic distinction, e.g. between smooth and noisy images. If multiple wavelets are used, each
for a part of the image, more local features e.g. edges or local patterns of an image can be respected.
But the more wavelets have to be created, the more wavelet coefficients have to be stored in the
compressed image file, which may impair the enhancement that was achieved by making the wavelets
adaptive to the image.

3.1.1 Goal of optimization

As stated above, on natural images, standard wavelets reduce the values on the H band. This effect
is utilized for compression. With adaptively created wavelets we want to optimize this reduction. So
first of all, we have to select a measurement for a total amount of all signal values. The definition
of vector norms fits best to our intuitive concept of total amounts. Some of the vector norms as
the sum norm, the maximum norm and the EUCLIDean norm (which is equivalent to thePSNR
measurement for optimization, see section2) are explored quite well. The EUCLIDean norm weights
big vector components more than small components. This differs from the sum norm which weights
all component values equally. But the EUCLIDean norm does not over-emphasize big components in
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opposition to the maximum norm, where only one big component is sufficient to increase the norm to
the component’s value.

Thus the EUCLIDean norm warrants a good balance and furthermore it allows the application of
straightforward optimization algorithms sometimes.

For simplicity we will start with one-dimensional signals. Then, the EUCLIDean norm is defined
as

‖x‖2 =

√√√√n−1∑
i=0

xi
2

At first, we try to not to restrict the norm reduction to the H bands for more generality. LetW be
the matrix that describes the whole wavelet transform, then we can express this goal as finding aW
where

‖Wx‖2 → minimum!

with the requirement thatW−1 must exist.
But the requirement of the reversibility ofW (equivalent to∀x 6= 0 : ‖Wx‖2 > 0) is not

enough. Since‖Wx‖2 depends continuously on a varying wavelet transformationW , there is no
minimum if we exclude‖Wx‖2 = 0, only. To avoid this problem, we could e.g. claim wavelet
transformations with balanced norms of the transformations in both directions,‖W‖2 =

∥∥W−1
∥∥

2
.

Note that this may contradict to a normalization of the polyphase determinant to 1 (section2.1.2).
As the normalization of the polyphase determinant, the normalization of the norms should also have
good numerical properties, because the optimization can not lead to wavelet transformations with
low (good) bounds for the one direction which has to be paid with high (bad) bounds for the reverse
transformation. The balancing results in a normalization which can be assured by scaling. For every
reversibleW a scaled

W ′ =

√
‖W−1‖2
‖W‖2

·W

would be such a balanced wavelet transformation. Thus a better optimization approach would be∥∥W ′x
∥∥

2
→ minimum!

with the requirement that‖W ′‖2 =
∥∥W ′−1

∥∥
2

(which includes the existence ofW ′−1).
How can we do this optimization, respecting that the linear transformationW is a wavelet transfor-

mation and is normalized to‖W‖2 =
∥∥W−1

∥∥
2

? The generic representation of any finite dimensional
linear operation is the matrix representation. But the whole wavelet transformation written as a ma-
trix has a complex structure. The matrix coefficients depend non-linearly on the filter coefficients,
and it is difficult to retrieve the filter coefficients from the matrix representation. This is even more
complicated, if different filters on different transformation levels are allowed. Also, the restriction
to minimize all H bands only would not simplify the problem. Thus it should be easier to optimize
within one transformation step.

3.1.2 The optimization scheme

Keep in mind that we have to construct invertible wavelets, which means that the restriction for the
filter pair h, g must be respected, i.e. the polyphase matrix has to be regular, which is equal to a
monomial determinant of the polyphase matrix. Additionally, we will require the determinant to be
normalized to the constant 1 (refer to section2.1.2). But with this normalization it makes no longer
sense to normalize the transformation norms. So we will drop the condition of balanced matrix norms.
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Under the restriction of the normalized polyphase determinant we have to minimize the norm
of the transformed signal after one transformation step. Since the polyphase determinant depends
non-linearly on the filter coefficients, the problem is still too complex. We also do not know how
modifying the L band (the one which is transformed in the next step again) can influence subsequent
transformation steps. So we will content ourselves to minimizing the norm of the H band, leaving the
L band unchanged and rely on the reduction of the norm of the L band in subsequent transformation
steps.

The greatest common divisor of the filtersge, go (those that formg) is always a divisor of the
polyphase determinant. Thusge andgo must be relatively prime, otherwise the polyphase determinant
can not be a monomial. This restriction complicates the optimization still too much. At this point the
lifting scheme [4] comes to a rescue, because wavelet transformations constructed with it are always
reversible. Thus we will try to design lifting steps from L bandxe to H bandxo to reduce the energy
on the H band as depicted in figure3.2.

Lifting with s as lifting filter has the following effect, depending on the lift direction:

x′o := xo + xe ∗ s | L → H lifting

x′e := xe + xo ∗ s | H→ L lifting

x

xe

xo

s

Figure 3.2: Idea of lifting – How pixels in one band predict the ones in the other

Multiple lifting steps are applied alternating between the two bands, because two following lifting
steps in the same direction can be merged to one. If multiple lifting steps are applied, eitherx′e or x′o
replacesxe andxo, respectively, as input for the succeeding step. Figure3.3may demonstrate that.

The big advantage of the lifting method is, that we automatically receive invertible transformations
as results. We can even use non-linear lift functions, anyhow we can be sure that we can do a reverse
transformation.

In the context of reducing the norm of the H band we can interpret the lifting step as predicting
the H bandxo signal by filtering the L bandxe. The filters is optimal if it filters the L bandxe and
produces the predictionye := s ∗ xe that is as similar as possible to the H bandxo. In other words
‖x′o‖2 = ‖xo − s ∗ xe‖2 should be small.

‖s ∗ xe − xo‖2 → minimum!
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Figure 3.3: The lifting scheme in one dimension – Here for example with two
stepss andt and the corresponding back transformation on the right side

3.1.3 Least mean square optimization

Now, let us express our strategy in terms of Linear Algebra. For simpler notation we will usex as the
identifier for the source signal,y = s ∗ x for the predicting signal derived from it andu for the signal
to be predicted. Thus it isx = xe, y = ye, u = xo, and the optimization goal is expressed by

‖s ∗ x− u‖2 → minimum!

LetS be the transformation matrix corresponding to the filters = (sm, sm+1, . . . , sn−1, sn),m ≤
0, n ≥ 0, that meansSx = s ∗ x, and letl be the length of the H band. ThenS can be written as



sn sn−1 sn−2 · · · sm 0 0 · · · 0 0 0
0 sn sn−1 · · · sm+1 sm 0 · · · 0 0 0
0 0 sn · · · sm+2 sm+1 sm · · · 0 0 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

0 0 0 · · · sn sn−1 sn−2 · · · sm 0 0
0 0 0 · · · 0 sn sn−1 · · · sm+1 sm 0
0 0 0 · · · 0 0 sn · · · sm+2 sm+1 sm



whereS ∈ Rl,l+|s|



y0

y1

y2
...

yl−3

yl−2

yl−1


= S ·



xm

xm+1

xm+2
...

xl+n−3

xl+n−2

xl+n−1


If it is inconvenient that the filtered signal is shorter than the input, the first−m and lastn

columns ofS could be cut off, which is equivalent to filling the unknown input valuesxm, . . . , x−1

andxl, . . . , xl+n−1 with zeros. Finding a filter which minimizes the norm ofy − u, means find-
ing the corresponding filter matrix, which is not a very clever approach. But we remember that the
convolution is commutative, so it is the same if we ask for ans where

‖x ∗ s− u‖2 → minimum!
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That means we expressx as a matrixX ∈ Rl,|s|+1 ands as a vector.

y0

y1

y2
...

yl−3

yl−2

yl−1


= X ·



sm

sm+1

sm+2
...

sn−2

sn−1

sn


X = (xjk)j=0...l−1,k=m...n

xjk =

{
xj−k : 0 ≤ j − k < l

0 : otherwise

=



x−m x−m−1 x−m−2 · · · x1 x0 0 · · · 0 0 0
x−m+1 x−m x−m−1 · · · x2 x1 x0 · · · 0 0 0
x−m+2 x−m+1 x−m · · · x3 x2 x1 · · · 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 0 0 · · · xl−2 xl−3 xl−4 · · · xl−n−1 xl−n−2 xl−n−3

0 0 0 · · · xl−1 xl−2 xl−3 · · · xl−n xl−n−1 xl−n−2

0 0 0 · · · 0 xl−1 xl−2 · · · xl−n+1 xl−n xl−n−1


Finally we obtain a standard linear least mean square problem ins,

‖Xs− u‖2 → minimum!

which is solvable with several algorithms, such as normal equations, the QR decomposition method,
the singular value decomposition ofX and the pseudo inverse ofX [19].

In our software package we follow the simple approach of normal equations:

smin = argmin
s
‖Xs− u‖2 ⇔ XTXsmin = XTu

Assumed thatXTX is regular the linear equation system on the right hand can be solved with a
CHOLESKY decomposition. Tests with long filters (20 taps and more) have shown that the implemen-
tation of the CHOLESKY decomposition inTNT [10] may fail sometimes, so that the iterativeconju-
gate gradientmethod [19] is implemented in our software package, too, which replaces CHOLESKY’s
method now. Unfortunately it is not known, how theconjugate gradientiteration reacts on an almost
singular matrixXTX, which can occur when a filters is requested, that has more coefficients than
necessary for exact prediction of a given signal structure.

Table 3.1 presents the compression ratios which will be achieved with the least mean square
prediction. Note that the transformation is done with a predicting step only, whereas an update step is
left. We see that simple predicting may even damage the compression effect compared to a standard
wavelet. It has to be explored what the problem is. Indeed the energy of the H band is decreased by
longer prediction filters. It is well below the decrease of energy from the original signal to the one
with the subtracted predicted signal. The results show that the decrease of energy in the H band does
not necessarily lead to better pack rates.

The exception is thelena noisy image which consists of a mixture oflena with a synthetical
pattern like that of a coarse printing. One can see that a certain filter length is needed to adapt the
pattern. But synthetical patterns are also dangerous, because the matrixXTX of the normal equation
system may become singular.
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image CDF 2,2 2 4 10 50

baboon 6.25 6.34 6.32 6.30 6.30
goldhill 5.06 5.12 5.11 5.11 5.11
lena noisy 8.92 8.53 8.63 5.56 5.47
lena 4.56 4.62 4.67 4.66 4.67
mountain 7.38 7.52 7.45 7.44 7.44
parrot 4.44 4.72 4.65 4.65 4.74
pepper 4.97 5.22 5.21 5.20 5.18
sarpripuls 7.21 7.24 7.22 7.21 7.21

Table 3.1: Least mean square prediction – How does increasing the size of the
predictor influence the pack rate? CDF-2,2 is compared to wavelets which consist
of a single prediction lifting step. The predictor is computed for every image and
for every transformation level and direction (horizontal, vertical). The predictors
have the sizes 2, 4, 10, 50, respectively. Transformation is done over 6 levels.
Thereafter every image is lossless compressed withEZT method. The bits per
pixel rate achieved is presented here.

3.1.4 Special cases

The described optimization scheme can be modified to better fit particular applications. Every mod-
ification to the scheme that leaves the linear characteristic unchanged can be handled with the linear
least mean square optimization algorithm.

Treatment of undefined input values: As mentioned abovel + |s| input values are necessary to
get l output values, when using a filter with|s| + 1 coefficients. But normally you expect the same
number of input and output values. The solution used above was to fill extra input values with zero.
But this introduces discontinuities into the input signal. Instead, values can be reused at the start and
the end in reversed order. This results in the matrix:

X = (xjk)j=0...l−1,k=m...n

xjk =

{
x(j−k) mod l : 0 ≤ (j − k) mod 2l < l

x(k−j−1) mod l : otherwise

=



x−m x−m−1 · · · x2 x1 x0 x0 x1 · · · x−m−2 x−m−1

x−m+1 x−m · · · x3 x2 x1 x0 x0 · · · x−m−3 x−m−2

x−m+2 x−m+1 · · · x4 x3 x2 x1 x0 · · · x−m−4 x−m−3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
xl−n+2 xl−n+3 · · · xl−1 xl−2 xl−3 xl−4 xl−5 · · · xl−n−2 xl−n−3

xl−n+1 xl−n+2 · · · xl−1 xl−1 xl−2 xl−3 xl−4 · · · xl−n−1 xl−n−2

xl−n xl−n+1 · · · xl−2 xl−1 xl−1 xl−2 xl−3 · · · xl−n xl−n−1



The assumption of periodic input signal can be made to legitimate the FOURIER analysis. Then
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X looks like this:

X = (xjk)j=0...l−1,k=m...n

xjk = x(j−k) mod l

=



x−m x−m−1 x−m−2 · · · x1 x0 xl−1 · · · xl−n+2 xl−n+1 xl−n

x−m+1 x−m x−m−1 · · · x2 x1 x0 · · · xl−n+3 xl−n+2 xl−n+1

x−m+2 x−m+1 x−m · · · x3 x2 x1 · · · xl−n+4 xl−n+3 xl−n+2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
x−m−3 x−m−4 x−m−5 · · · xl−2 xl−3 xl−4 · · · xl−n−1 xl−n−2 xl−n−3

x−m−2 x−m−3 x−m−4 · · · xl−1 xl−2 xl−3 · · · xl−n xl−n−1 xl−n−2

x−m−1 x−m−2 x−m−3 · · · x0 xl−1 xl−2 · · · xl−n+1 xl−n xl−n−1



Equal coefficients: The coefficients of the filter to be designed may depend on each other. The sim-
plest dependency is that some coefficients have to be equal. You can modifyX to generate symmetric
filters automatically. Say, two filter coefficientssj andsk shall be equal, then the result is the same
if you removesk from the vectors and add thekth column to thejth one, removing thekth column
fromX hereafter.

For image processing it might be desirable to avoid visible distortions caused by asymmetric
wavelet filters. It is no problem to restrict the optimization to symmetric filters (n = −m):

∀j ∈ {0, . . . , n} : sj = s−j

You only need to determine the coefficientss0, . . . , sn. Note that the following definition ofX con-
tains matrix elements with indices out of0, . . . , l − 1. Fill them as you like or follow the description
of the previous section.



y0

y1

y2
...

yl−3

yl−2

yl−1


= X ·


s0
s1
...

sn−1

sn



X = (xjk)j=0...l−1,k=0...n

xjk =

{
xj : k = 0
xj−k + xj+k : otherwise

=



x0 x−1 + x1 x−2 + x2 · · · x−n + xn

x1 x0 + x2 x−1 + x3 · · · x−n+1 + xn+1

x2 x1 + x3 x0 + x4 · · · x−n+2 + xn+2

...
...

...
. . .

...
xl−3 xl−4 + xl−2 xl−5 + xl−1 · · · xl−n−3 + xl+n−3

xl−2 xl−3 + xl−1 xl−4 + xl · · · xl−n−2 + xl+n−2

xl−1 xl−2 + xl xl−3 + xl+1 · · · xl−n−1 + xl+n−1


Table3.2shows how the compression rates change when restricting the prediction filters to sym-

metric coefficients. It was to expect that the visual improvement must be paid with less compression
efficiency, but the results show that the compression rates are comparable to those of the unrestricted
predictors (table3.1).
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image CDF 2,2 2 4 10
asym sym asym sym asym sym

baboon 6.25 6.34 6.34 6.32 6.32 6.30 6.31
goldhill 5.06 5.12 5.11 5.11 5.11 5.11 5.13
lena noisy 8.92 8.53 8.53 8.63 8.62 5.56 5.58
lena 4.56 4.62 4.62 4.67 4.66 4.66 4.66
mountain 7.38 7.52 7.52 7.45 7.46 7.44 7.44
parrot 4.44 4.72 4.72 4.65 4.65 4.65 4.63
pepper 4.97 5.22 5.20 5.21 5.19 5.20 5.18
sarpripuls 7.21 7.24 7.24 7.22 7.22 7.21 7.21

Table 3.2: Least mean square prediction with symmetric predictors – It is the
same situation as in table3.1, except that now symmetric predictor filters are
computed and applied additionally. They are compared to the asymmetric predic-
tors from above.

3.1.5 Lifting variants

Our approach is not limited to one dimensional (1D) lifting. Some extensions can be made easily. The
idea is always the same: Filtering data means calculating some linear combinations of input values
and filter coefficients. So look which input valuesxjk

are included to calculate one output valueyj

and write them as thejth row intoX. Then solveXTXs = XTu for s.

2D lifting: There are several possibilities to extend the optimization scheme to two dimensions. The
restriction to pictures that have only one component per pixel, e.g. grey scale pictures, is retained.

The easiest extension emerges if the image is considered as a set of columns or rows and operations
are performed on the columns and rows like on one dimensional signals. This results in separable
wavelets and does not give us more choices for lifting scheme generalizations. But it can still be
chosen how many filters shall be constructed. One per line, one per image or one for some line
groups, for groups of equal or different sizes. Since optimization is based on the result of the previous
transformation step, the order whether you start on rows or on columns will influence the result as
well.

The other possibility to move towards 2D is to think about generalized lifting schemes. We re-
member that the approach in one dimension was to predict values of the odd band using values of the
even band. On images we have not only two bands but four sub-pictures. After sorting the pixels, odd
to the right/bottom, even to the left/top, the right bottom picture now plays the role of the H band. It
is possible to design filters that predict the values of the right bottom picture HH by filtering values
from the other three pictures. The case of small filters can be better illustrated on the original image
(refer to figure3.4). Every pixel of the HH partuj,k with j ≡ k ≡ 1 mod 2 is predicted with

yj,k =
∑

a≡0 mod 2 ∨
b≡0 mod 2

sj−a,k−b · xa,b

E.g. with3 × 3 filters you predict the value of one pixel by a linear combination of the pixels in its
8-neighbourhood.
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In a second step you design filters to predict the right top picture LH with the LL band, i.e. for all
j ≡ 1 mod 2, k ≡ 0 mod 2 you calculate

yj,k =
∑

a≡0 mod 2 ∧
b≡0 mod 2

sj−a,k−b · xa,b

and analogous, you predict the left bottom picture HL with the LL part. This method makes sure that
the result is independent of the optimization order. This differs from the adaptive lifting step creation
for separable wavelets!

Pixels which predict the ones in the
H H part

Pixels which predict the ones in the
L H part

Figure 3.4: Pixel prediction in two dimensions – Boxes corresponds to LL band
pixels, dashed boxes corresponds to HH band pixels, rounded boxes corresponds
to either LH or HL band pixels.

The ideas of 2D lifting (interpolationfrom sub-sampled images) and least mean square optimiza-
tion (BURGs algorithm) are always covered by [7] separately. Different to what we consider here,
updating lifting steps are left and the transformed data is compressed with HUFFMAN, arithmetical
coding and LEMPEL-ZIV-WELSH (LZW) compression instead ofEZT. The least mean square predic-
tion which is performed line by line and from left to right in every row with appended HUFFMAN or
arithmetical coding achieved the best results in that test.

Non-linear lifting: According to table3.1 and table3.2 using bigger filters does not warrant to
improve the results. So it is of interest if one can get better results by extracting more information
from pixels which lay close around the one that shall be predicted. For doing the optimization it
is not necessary to restrict to linear dependencies from the input values. As shown in figure3.5 it
is also possible to use linear combinations of terms which depend non-linearly on the input values.
E.g. it would be a special case if one band would be processed in a non-linear way into a temporary
buffer and then used as the source for a filter based lifting step. As example for non-linear lifting
we consider additional terms likexnxn+1 (which has the wrong physical unit, what means that its
coefficient depends on the amplitude of input signal) or

√
xnxn+1 (which makes trouble when the

radicand is negative and it is not clear how to choose the sign of the root). Such non-linear terms miss
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some nice characteristics: They depend on the offset of input data, which means you can not reuse
coefficients on the same data if their offset is varying. Given, an image has a characteristic which is
described very good by such terms but has a slightly changing offset, using the additional term will
not lead to an advantage.

Assuming thatxnxn+1 < 0 indicates a zero betweenn andn + 1, we quickly write a function
which works around the root problems and we can build a newX:

c(u, v) :=

{
sgn(u) ·

√
uv : uv >= 0

0 : otherwise

X = (xjk)j=0...l−1,k=0...2

xjk =


xj : k = 0
c(xj , xj+1) : k = 1
xj+1 : k = 2

=



x0 c(x0, x1) x1

x1 c(x1, x2) x2

x2 c(x2, x3) x3

...
...

...
xl−3 c(xl−3, xl−2) xl−2

xl−2 c(xl−2, xl−1) xl−1

xl−1 c(xl−1, xl) xl



x

xe

xo

s

c

Figure 3.5: Non-linear prediction of the other band – The non-linear mappingc
is inserted before the filters.

3.2 Improved norm bounds

Since we are not working with orthogonal/unitary wavelets, it is not exactly known how big the
change of the image is if some values of the transformed image are changed. Such changes happen if
the transformed image is compressed in a lossy manner. In the following we will spend our interest on
reducing this uncertainty (which can be expressed by tight lower and upper transformation bounds).
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At first glance this goal seems to be contrary to the good pack rates we want to achieve, since
the latter requires small values in the transformed image in contrast to the original image. But since
the transformation is designed to be exactly reversible, it is natural that many small values require a
few very big values somewhere in the transformed image. This must be similar in the behaviour of
wavelets, which have close norm bounds, too.

We will discuss two approaches to design lifting steps that can be performed after other lifting
steps, e.g. energy minimizing predictor lifting steps, to make the norm bounds closer. On the one
hand, splitting the prediction and the norm narrowing step leads to sub-optimal results, on the other
hand, when optimizing them together, it is not clear how to balance both optimization criteria.

One might ask, why we determine general norm bounds for wavelets we constructed just for a
specific image. E.g., if you construct a predictor for a given image, in the worst case the H band is not
touched and in the best case it vanishes, which means that the norm of the image after applying the

predictor is between‖xe‖2 and
√
‖xe‖22 + ‖xo‖22. Why general bounds if the transformation is only

used for this signal?
The reason is the change of the transformed image caused by lossy compression, again. When

transforming back we start on an image that differs more or less from the one we obtained by the
analysis transformation. That is why we have to deal with the signal independent operator norms.

3.2.1 Weighted filters

One possible way to improve the bounds is to weight the filters for both channels: One filter is ampli-
fied and the other must be weakened. This keeps the balance expressed by the polyphase determinant
as given in (2.1.6) which was fixed to 1.

That is what we have to solve:

αmin = argmin
α∈R\{0}

max
z∈C
|z|=1

pα(z)

pα is thep polynomial as in (2.1.12) corresponding to the weighted polyphase matrix

(
αhe αho
1
αge

1
αgo

)
which can be shortly expressed as:

pα := α2 · 1
2(hehe + hoho)︸ ︷︷ ︸

=:v

+
1
α2
· 1

2(gege + gogo)︸ ︷︷ ︸
=:u

Weighting problem is convex: We are now going to show that this optimization problem is convex,
which yields to some nice features. E.g. any local minimum of a convex problem is the global
minimum, too, and the set of local minima forms an interval (maybe containing∞).

Sincehe(z)he(z) ≥ 0, ho(z)ho(z) ≥ 0, . . . the v, u as defined have only non-negative real
values on the complex unit circle. We know that the following defines a norm in the space of such
polynomials:

‖v‖∞ := max
z∈C
|z|=1

|v(z)| | v(z) ≥ 0

= max
z∈C
|z|=1

v(z)
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We will show, that

f(β) :=
∥∥∥∥βv +

1
β
u

∥∥∥∥
∞

is convex inβ ∈ R+, thusf has exactly one minimum on an interval, which will often consist of one
point only. Calling one of the minimum argumentsβmin we obtainαmin = ±

√
βmin.

For all t ∈ [0, 1], β0, β1 ∈ R+ it is true that

f(tβ0 + (1− t)β1) =
∥∥∥∥(tβ0 + (1− t)β1)v +

1
tβ0 + (1− t)β1

u

∥∥∥∥
∞

(3.2.1)
≤

v≥0 ∧ u≥0

∥∥∥∥(tβ0 + (1− t)β1)v +
(
t

1
β0

+ (1− t) 1
β1

)
u

∥∥∥∥
∞

≤ t ·
∥∥∥∥β0v +

1
β0
u

∥∥∥∥
∞

+ (1− t) ·
∥∥∥∥β1v +

1
β1
u

∥∥∥∥
∞

≤ t · f(β0) + (1− t) · f(β1)

which is the convexity condition. We have used this auxiliary calculation:

0 ≤ t(1− t)(β0 − β1)2

0 ≤ t(t− 1) · 2β0β1 + t(1− t)(β2
0 + β2

1)
0 ≤ (t2 + (t− 1)2 − 1) · β0β1 + t(1− t)(β2

0 + β2
1) | +β0β1

β0β1 ≤ (tβ0 + (1− t)β1)(tβ1 + (1− t)β0)
| : (β0β1)(tβ0 + (1− t)β1)

1
tβ0 + (1− t)β1

≤ t

β0
+

1− t
β1

(3.2.1)

We can also predict some limits of the upper bound minimization by weighting. How small can
the upper bound become in the best case?

‖pα‖∞ =
∥∥∥∥α2v +

1
α2
u

∥∥∥∥
∞

| v ≥ 0 ∧ u ≥ 0

=

∥∥∥∥∥
(
α
√
v − 1

α

√
u

)2

+ 2
√
vu

∥∥∥∥∥
∞

because of non-negative summands

≥
∥∥2√vu∥∥∞

= 2
√
‖vu‖∞

With (2.1.15) you can compute the transformation bounds associated with this estimation. Note
that this bound will not always be attained.

Exact solution: f(β) is continuous but not necessarily smooth, the graph may have pikes. A pike
may occur whenever two maxima regardingz of pα(z) have the same magnitude. Figure3.6visualizes
this case. The minimum regardingβ may be at such a pike, in this case we will call it a non-smooth
minimum, otherwise a smooth minimum.
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pα(ω) ‖p‖∞

ω

pα0

pα1

pα2

α0 α1 α2

Figure 3.6: How non-smooth minima arise

With z = eiω let

y(β, z) := βv(z) +
1
β
u(z)

Thenf can be expressed with the help ofy:

f(β) = max
z∈C
|z|=1

y(β, z)

and we ask for
βmin = argmin

β
f(β)

What we could do, is to find all candidates ofβ for locations of pikes and all candidates for smooth
minima. Then we had to verify whichβ of this set is the global minimum. Unfortunately, it is not
clear, how to locate the pikes, but it is possible to find a small (i.e. finite) set of candidates for smooth
minima by determining the set of all stationary points ofy regardingβ andz,

M := {(β, z) : yβ(β, z) = 0, yω(β, z) = 0}

M contains all local minima, maxima and saddle points ofy regardingβ andz. Thus it contains the
saddle point forβmin, which is a minimum regardingβ and a maximum regardingz.

For stationary points(β, z) it holds:(
0
0

)
!=
(
yβ(β, z)
yω(β, z)

)
(3.2.2)

=

(
v(z)− 1

β2u(z)
βvω(z) + 1

βuω(z)

)
(3.2.3)

This implies for every stationary point:

(3.2.2)⇒ 0 = yβ(β, z)uω(z) + yω(β, z)
u(z)
β

(3.2.3)⇒ 0 = v(z)uω(z) + vω(z)u(z)
= (vu)ω(z)
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For everyz with (vu)ω(z) = 0 we can determineβ =
√

u(z)
v(z) . Theseβ’s are the only candidates

for a smooth minimum off(β). If for a fixed β, y(β, z) is globally maximal in regard toz, then,
sincey(β, z) is convex in regard toβ, f(β) is the global minimum and it is smooth. Otherwise the
minimum is non-smooth and we do not know how to locate it exactly.

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1 1.1 1.2 1.3 1.4 α

pα

Figure 3.7: Graph ofpα

Example: Weight CDF-2,2: To verify the result we will weight the well-known CDF-2,2 wavelet
filter pair in order to minimize the norm bounds. The graph ofpα displayed in figure3.7let us assume,
that the minimum is non-smooth and lies around1.19. But we will locate it exactly. According to
section2.1.6it is

128pα = α2(1,−8,46,−8, 1) +
16
α2

(1,6, 1)

128p̃α(r) = α2((2r)2 − 8 · (2r) + 44) +
16
α2

((2r) + 6)

32p̃α(r) = α2(r2 − 4r + 11) +
8
α2

(r + 3)

We see again that the coefficient ofr2 is positive, which is the reason thatp̃α(r) is convex with
respect tor and the maximum is at the borders of[−1, 1].

16p̃α(−1) = 8α2 +
8
α2

16p̃α(1) = 4α2 +
16
α2

We check the candidates for a smooth minimum . . .
p̃α(−1) is minimal for α2 = 1 and 16 ‖p1‖∞ = max {16, 20} = 20
p̃α(1) is minimal for α2 = 2 and 16

∥∥∥p√2

∥∥∥
∞

= max {20, 16} = 20
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. . . and the candidates for a non-smooth minimum

p̃α(−1) != p̃α(1)

8α2 +
8
α2

= 4α2 +
16
α2

4α2 =
8
α2

α4 = 2

It is 16
∥∥∥p 4√2

∥∥∥
∞

= 12
√

2.

min
α
‖pα‖∞ = min

{
‖p1‖∞ ,

∥∥∥p 4√2

∥∥∥
∞
,
∥∥∥p√2

∥∥∥
∞

}
=

3
4

√
2

argmin
α
‖pα‖∞ = 4

√
2

This is the result we expected referring to section2.3.
Since the intention of narrowing the norm bounds was to give more safety when deciding about

which pixels of the transformed image are relevant and which are not, we can expect that compression
artifacts are reduced on lossy compression. With table3.3this hypothesis can be verified.

image 1 8
√

2 4
√

2 8
√

2
3 √

2 Chebyshev

baboon 20.71 23.20 24.24 24.58 24.48 24.42
goldhill 28.89 30.07 31.57 32.05 32.00 31.78
lena noisy 9.54 10.20 11.12 10.97 10.43 10.79
lena 32.01 34.45 35.52 35.84 35.80 35.55
mountain 15.01 17.72 19.07 19.49 19.54 19.31
parrot 25.45 30.18 31.59 32.17 32.20 31.88
pepper 30.88 33.43 34.57 34.95 34.94 34.67
sarpripuls 18.29 19.48 20.01 20.18 20.29 19.92

Table 3.3: Weighting and CHEBYSHEV wavelet – Do closer norm bounds assure,
that the energy of compression artifacts is reduced? – After applying a CDF-
2,2, the bands are weighted by the factors1, 8

√
2, 8
√

4, 8
√

8, 8
√

16, respectively. For
comparison the CHEBYSHEV wavelet constructed in section2.2.3is used in the
right column. Transformation includes 6 levels. Thereafter the images are com-
pressed to 0.5 bpp, decompressed and compared to the original image. The dif-
ferences measured asPSNR (section2) are presented here. Higher values mean
better matching of original and decompressed image. According to the theory,
from all weighted CDF-2,2 wavelets the one with weighting factor4

√
2 should

give the best results.

As we can see, the weighting really reduces the difference between original and processed image.
Apparently, the optimal weighting factor is always a bit above the theoretical predicted value of4

√
2.
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8
√

2
3

seems to be a better choice. This could be explained since we considered one transformation
step for optimization only, and thus did not get the optimum of the whole transformation. We realize,
that the linear interpolating CHEBYSHEV wavelet achieves an improvement comparable to that of an
optimally weighted CDF-2,2 wavelet, but it is not as good as the latter.

The reduction of the image difference is not only a technical improvement, it can be visually
verified, too. Examples are given in figure3.8.

unweighted weighted CHEBYSHEV

Figure 3.8: Weighting and CHEBYSHEV wavelet – Does reduced differences be-
tween original and lossily compressed images lead to visual improvement? The
images in the first two columns are transformed with CDF-2,2, in the second
column it is additionally weighted by4

√
2 after every transformation step. The

right column contains images processed with the linear interpolating CHEBY-
SHEV wavelet of section2.2.3. Transformation is repeated over 6 levels. There-
after the transformed images are compressed to 0.5 bpp and decompressed again.
The results are shown here.

We discover an interesting connection: With higher weighting factors the L band is amplified and
the H band is weakened. One might expect that low frequencies will more and more dominate the
decompressed image when the weighting factor increases. But figure3.8 shows that the opposite is
true – Up to a certain point the amplification of low frequency coefficients preserves more high fre-
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quencies in the image. But the bigger safety when evaluating the significance of a wavelet coefficient
which is targeted by weighting may explain this behaviour.

Although the approach of reducing the norm bound differences was made to improve the results
of lossy image compression, there might also be an increase of the pack rate when using wavelets of
this approach for lossless compression. Table3.4 validates this assumption. We can see that for the
most images, the optimal weighting factors for good compression ratios are close to that for minimal
distortion on lossy compression (table3.3).

image 1 8
√

2 4
√

2 8
√

2
3 √

2 Chebyshev

baboon 6.25 6.23 6.21 6.20 6.21 6.24
goldhill 5.06 5.06 5.05 5.06 5.07 5.13
lena noisy 8.92 8.80 8.67 8.69 8.69 8.82
lena 4.56 4.57 4.56 4.56 4.57 4.68
mountain 7.38 7.33 7.29 7.27 7.26 7.30
parrot 4.44 4.48 4.51 4.50 4.56 4.77
pepper 4.97 4.94 4.92 4.90 4.90 4.96
sarpripuls 7.21 7.18 7.15 7.15 7.15 7.18

Table 3.4: Weighting and CHEBYSHEV wavelet – Can the amplitude of different
transformation levels be weighted in a way that increases compression efficiency?
– After applying a CDF-2,2 it is weighted by the factors1, 8

√
2, 8
√

4, 8
√

8, 8
√

16, re-
spectively. The pack rates for the CHEBYSHEV wavelet are given for comparison
in the last column. Transformation is done over 6 levels. Thereafter every im-
age is lossless compressed withEZT method. The bits per pixel rate achieved is
presented here.

Approximative solution: Due to the convexity off(β), there are not many difficulties for imple-
menting an iterative algorithm for finding the minimum, since there is only one. The only problem is
the big computation effort, because all maxima of a polynomial have to be determined only to com-
pute one value off(β). Finding the maxima of a polynomial again requires an iteration process for
finding the zeros of the derivative. This means a nested iteration, which is pretty slow. Nevertheless,
this is the current implementation in our software package. For speedup, further implementations
could reuse the zeros found in one step as start approximations in the next step.

In the first phase the algorithm tries to find a lower and an upper bound for the minimumβ.
f(0.5), f(1), f(2) are calculated. If they form a falling sequence it is continued with computing
values to the right:f(4), f(8), f(16), . . . , if they form a rising sequence it is searched to the left:
f(0.25), f(0.125), f(0.0625), . . . . When aβ is reached wheref(β) < f(β

2 ) ∧ f(β) < f(2β) then
β
2 and2β are obviously bounds for the minimum.

The second phase narrows the bounds step by step. Starting with the boundsβ− andβ+ and a
β0 between them, some newβ within the interval are guessed and a tripleβ′−, β

′
0, β

′
+ of neighboured

points withf(β′0) < f(β′−) ∧ f(β′0) < f(β′+) is selected and passed to the next iteration step. The
points between are guessed as follows:

1. a point betweenβ− andβ0: 1
2(β− + β0)
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2. a point betweenβ0 andβ+: 1
2(β0 + β+)

3. the vertex of the parabola laid through(β−, f(β−)) , (β0, f(β0)) , (β+, f(β+))

The iteration is aborted when|β+ − β−| appear to be below a given threshold.

Weighting by lifting: How can we weight in a way that allows perfect reconstruction, even when
computing with integers? [4] shows that weighting can also be done by lifting with four lifting steps
and that it is possible to choose the direction of the first lifting step. Additionally, it is pointed out that
the weighting is often part of a longer lifting sequence and it is suggested to choose the start direction
so that the first or last lifting step of the weighting can be joined with previous or subsequent lifting
steps. This way one can always reduce the weighting lifting sequence to three steps. We will leave out
this optimization and we will see, that the choice of the start direction is also a matter of computation
accuracy.

Let us follow an approach to determine four lifting steps which can perform the weighting process.
Each lifting step is represented by its polyphase matrix. The way the polyphase matrix is defined we
have to order the lifting step matrices from the right to the left. We start with lifting from the L band
to the H band. If starting with lifting in reverse direction is preferred, lifting steps can be designed to
weight by 1

α and then the direction of every lifting step must be reversed, too.

(
α 0
0 1

α

)
!=
(

1 d
0 1

)(
1 0
c 1

)(
1 b
0 1

)(
1 0
a 1

)
∣∣∣∣ α ·

(
1 −d
0 1

)
· () ·

(
1 0
−a 1

)
(

1 −d
0 1

)(
α2 0
0 1

)(
1 0
−a 1

)
= α

(
1 b
c 1 + bc

)
(
α2 −d
0 1

)(
1 0
−a 1

)
= α

(
1 b
c 1 + bc

)
(
α2 + ad −d
−a 1

)
= α

(
1 b
c 1 + bc

)

Comparison of matrix entries yields:

α2 + ad = α (3.2.4)

−d = αb (3.2.5)

−a = αc (3.2.6)

1 = α(1 + bc) (3.2.7)

But we observe, that if we insert (3.2.5) and (3.2.6) into (3.2.4)

α2 + α2bc = α

α(1 + bc) = 1

we obtain, that the equation (3.2.7) depends on the three other equations formed by the matrix equa-
tion. Does this mean that we can save one of the lifting steps?
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If we remove one of the lifting steps associated withb or c (b = 0 or c = 0, respectively), the steps
for a andc as well asb andd could be joined, which would force the other coefficients to be zero and
α = 1. If we remove one of the lifting steps associated witha or d (seta = 0 or d = 0) it follows
immediately thatc = 0 andb = 0, respectively and in both casesα = 1. Summarized, this means that
four lifting steps are necessary for weighting (different fromα = 1) and there remains one degree of
freedom. What can this free parameter be used for?

Minimize rounding errors: If we choosea = 1 we obtain the lifting steps proposed in [4]:

(
1, α− 1, − 1

α
, α− α2

)
(3.2.8)

But is this reasonable? What about numerical properties?

Let us recall that we need the lifting scheme primarily for integer calculation. For floating point
arithmetic direct multiplication is faster and probably more accurate. With integer calculation the
main advantage of the lifting used for weighting is the possibility of exact reconstruction. But how
can this be achieved?

Imagine, we have two numbersx andy which have to be weighted by a factorc, i.e. we want
to calculatec · x and 1

c · y. Say,c is a shift coefficientc = 2n, n > 0, thenc · x hasn trailing
zeros in its binary representation, whereasy is shiftedn bits to the right and itsn trailing bits are
lost. But the lifting operations are reversible! That means that the weighting performed by lifting will
lead to results different from those obtained by exact weighting with subsequent rounding in general.
Weighting by lifting will usually calculate approximations that are worse than the integer rounding
error which can be at most0.5. Thus it is of interest how these rounding errors can be minimized.

We want to get an error estimation which depends on the filters but not on the signal we will
process. Asking for an absolute error will fulfill this. We will use anε which describes the computing
precision. Because we work with integers,ε varies between−0.5 and0.5 – the maximum absolute
rounding error possible. Each time we add a value of the filtered source band to the destination band,
we have to increment the error by oneε because of rounding occurs. Of course, we always use the
absolute values of scalars that has to be multiplied with the error accumulated so far.

For simplification we chooseα > 0 and because for every lifting sequence(a, b, c, d), which
weights byα, the sequence(−a,−b,−c,−d) does it as well, we can chooseb ≥ 0 without loss of
generality. To avoid worrying about absolute values, we check with (3.2.5) and (3.2.6) that it is always
true thatsgn(a) = − sgn(c), sgn(b) = − sgn(d) andd ≤ 0 because of the choice ofb. Because
α(1 + bc) = 1, 1 + bc = 1

α it must beα ≥ 1 if and only if c ≤ 0. We will use the abbreviation

σ =

{
1 : α ≥ 1
−1 : α < 1

to be able to process everything together. It is sure now thatb,−d,−σc, σa are all non-negative. Now
let us explore what happens if we apply the lifting steps with respect to rounding:
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L band H band

0 0
·a→

0 ε

← b·
(1 + b)ε ε

·c→
(1 + b)ε (1 + 1− σc · (1 + b))ε

← d·
(2 + b− d · (2− σc · (1 + b)))ε (2− σc · (1 + b))ε

The sum of both errors is

(4 + b− 2d+ σc(b+ 1)(d− 1)) ε | (3.2.5) ∧ (3.2.7)

=
(

4 + b+ 2αb+ σ
1
b
(
1
α
− 1)(b+ 1)(−αb− 1)

)
ε

=
(

4 + (1 + 2α)b+ σ(1− 1
α

)(1 +
1
b
)(αb+ 1)

)
ε

=
(

4 + (1 + 2α)b+
∣∣∣∣1− 1

α

∣∣∣∣ ((1 + α) +
1
b

+ αb

))
ε

=

4 +
∣∣∣∣α− 1

α

∣∣∣∣+ ∣∣∣∣1− 1
α

∣∣∣∣︸ ︷︷ ︸
K:=

1
b

+ (1 + 2α+ |α− 1|)︸ ︷︷ ︸
L:=

b

 ε

K =

{
α−1

α : α ≥ 1
1−α

α : α < 1
L =

{
3α : α ≥ 1
2 + α : α < 1

K

b
+ Lb =

(√
K

b
−
√
Lb

)2

+ 2
√
KL

≥ 2
√
KL equality forb =

√
K

L
(3.2.9)

=

{
2
√

3(α− 1) : α ≥ 1

2
√

(1−α)(2+α)
α : α < 1

We have observed that we can either weight byα or weight by1
α with changed roles of the H band

and L band to achieve the same. That means that we can restrict the weighting method for eitherα ≥ 1
or α ≤ 1 dependent on the higher precision.
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(α− 1)2 ≥ 0
α2 − 2α+ 1 ≥ 0
−3α+ 3 ≥ −α2 − α+ 2
3(1− α) ≥ (1− α)(2 + α)

3
(

1
α
− 1
)
≥ (1− α)(2 + α)

α

4 +
∣∣∣∣ 1α − α

∣∣∣∣+ 2

√
3
(

1
α
− 1
)
≥ 4 +

∣∣∣∣α− 1
α

∣∣∣∣+ 2

√
(1− α)(2 + α)

α

∣∣∣∣ α′ :=
1
α

4 +
∣∣∣∣α′ − 1

α′

∣∣∣∣+ 2
√

3(α′ − 1)

error estimation forα′≥1

≥ 4 +
∣∣∣∣α− 1

α

∣∣∣∣+ 2

√
(1− α)(2 + α)

α
error estimation forα≤1

We see that the error is smaller when we choose weighting byα ≤ 1 instead of weighting by
α′ = 1

α ≥ 1 in the reverse direction. So we will continue with determining the lifting steps forα ≤ 1:

(3.2.9)⇒ b =

√
1− α

(2 + α)α

(3.2.7)⇒ bc =
1− α
α
⇒ c =

√
(2 + α)(1− α)

α

(3.2.5)⇒ d = −
√

(1− α)α
2 + α

(3.2.6)⇒ a = −
√

(2 + α)(1− α)α (3.2.10)

Examples for weighting by lifting: First, let us verify if there is some obvious advantage of this
solution over the one given in (3.2.8). We consider the caseα = 1. You might argue, that the
lifting step sequence can be compressed to length zero for both solutions. But we imagine that we
are working with values ofα only close to 1, where such compressions are not possible. The lifting
sequences obtained by both methods are:

• (3.2.8) – traditional:(1, 0, −1, 0)

• (3.2.10) – error minimized:(0, 0, 0, 0)

It can be seen easily, that the second variant really does not do anything, whereas the first variant
adds the L band to the H band and subtracts it immediately, again. We can see that the error minimizing
algorithm tends to use smaller lifting factors which should decrease the influences of the bands to each
other.

The weighting by4
√

2 as post-processing of the CDF-2,2 wavelet has shown former in this section,
that it optimizes the norm bounds of the CDF-2,2 wavelet. It should serve as a second example for
a lifting decomposition here. Since4

√
2 > 2 we have to work withα = 1

4√2
and we can obtain the
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coefficients which minimizes rounding errors:

a ≈ −0.617 ≈ −158
256

b ≈ 0.258 ≈ 66
256

c ≈ 0.733 ≈ 188
256

d ≈ −0.217 ≈ − 56
256

The fractions with a power of two as denominators are of interest for machine-oriented implementa-
tions.

The lifting sequence is:

L band H band

← −0.617·
·0.258→
← 0.733·
· − 0.217→

With this lifting sequence we now have a method to apply the weighted CDF-2,2 wavelet to a
signal in a fully reversible form, even if rounding errors occur.

3.2.2 Update lifting steps

We will now explore how the norm bounds can be narrowed by appending an update lifting step.

Updating problem is convex, too: We consider the filtershe, ho, ge, go before and the filtersh′e, g
′
e

after the lifting step with the lifting filters:

h′e = he + ges

h′o = ho + gos

2p′(s) = h′eh
′
e + h′oh

′
o + gege + gogo

= 2p+ (h′eg
′
e + h′og

′
o)︸ ︷︷ ︸

v:=

s+ (h′eg′e + h′og
′
o)s+ (gege + gogo)︸ ︷︷ ︸

u:=

ss

We want to verify, thatp′ is convex regardings:
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2p′(ts0 + (1− t)s1)
= 2p+ v(ts0 + (1− t)s1) + v(ts0 + (1− t)s1) +

u(ts0 + (1− t)s1)(ts0 + (1− t)s1)
= 2p+ v(ts0 + (1− t)s1) + v(ts0 + (1− t)s1) +

u
(
ts0ts0 + (1− t)s1(1− t)s1 + ts0(1− t)s1 + ts0(1− t)s1

)
= (1− t) · 2p+ (1− t)vs1 + (1− t)vs1 + (1− t)2us1s1 +

t · 2p+ tvs0 + tvs0 + t2us0s0 + t(1− t)u (s0s1 + s0s1)
= t · 2p′(s0) + (1− t) · 2p′(s1) + (t2 − t)s0s0 + (t2 − t)s1s1 + t(1− t)(s0s1 + s0s1)
= t · 2p′(s0) + (1− t) · 2p′(s1) + t

≥0
(t− 1)
≤0

(s0 − s1)(s0 − s1)︸ ︷︷ ︸
≥0

≤ t · 2p′(s0) + (1− t) · 2p′(s1)

Approximative solution: The algorithm implemented in our software package for determining an
update lifting step works as follows:

Start withs = 0. In every iteration cycle a direction∆s with a given norm (increment) is guessed.
If ‖p′(s+ ∆s)‖∞ < ‖p′(s)‖∞, it is assumed that further following this direction is successful, the
increment is increased and a further step towards this direction is tried. If the step does not reduce
‖p′‖∞, the increment is decreased and the step is canceled. This is repeated until the increment falls
below a given value.

image CDF 2,2 2 4 10 weight

baboon 6.25 6.29 6.30 6.32 6.28
goldhill 5.06 5.08 5.09 5.11 5.10
lena noisy 8.92 5.74 5.74 5.68 5.66
lena 4.56 4.58 4.57 4.60 4.64
mountain 7.38 7.41 7.43 7.46 7.38
parrot 4.44 4.61 4.62 4.73 4.66
pepper 4.97 4.99 5.02 5.05 5.10
sarpripuls 7.21 7.23 7.25 7.25 7.18

Table 3.5: Improving the norm bounds – How do further steps which improve
the norm bounds influence the pack rate? – The CDF-2,2 is compared to auto-
matically generated wavelets, each consisting of a symmetric least-mean-square
predictor of size 6 and an update lifting step of a symmetric filter of size 2, 4, 10,
respectively and the same predictor combined with a norm minimizing weight-
ing. Transformation is done over 6 levels. Thereafter every image is lossless
compressed withEZTmethod. The bits per pixel rate achieved is presented here.

The results in table3.5 are generated with lifting step sequences which summarize the methods
developed in this chapter. The first lifting step reduces the values on H band by linear least mean
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square prediction, the second lifting step narrows the norm bounds. For comparison the second step
is substituted with optimized weighting in the last column.

The artifacts introduced to the image when working with least mean square predictors and lossy
compression are shown in figure3.9. The distortions of the CDF-2,2 appear quite soft, whereas the
artifacts of the least mean square predictor are peaks and grids. The artifacts of the least mean square
predictor look comparable for different update lifting steps.

CDF-2,2 Least mean square prediction

Figure 3.9: Artifacts caused by linear prediction wavelets – The left image is
transformed with an unweighted CDF-2,2 wavelet, the right image is transformed
with a 10 tap symmetric least mean square predictor and a 4 tap norm minimizing
update. Transformation is repeated over 6 levels. Thereafter the transformed
images are compressed to 0.5 bpp and decompressed again. The results are shown
here.
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Chapter 4

Summary

4.1 Results and perspectives

Let us summarize expectations and results found in this work and how the exploration could be con-
tinued:

• Operator norm of a wavelet transformation

In section2.1.2we derived a method for determining the exact EUCLIDean operator norm of
a filter matrix application which is equivalent to a wavelet transformation step. Further explo-
rations may result in a method that can compute the norm of a complete wavelet transformation
with arbitrary number of levels.

In the case of two bands we could simplify the method in a way that even allowed optimization
of the norm bounds. This was done by introducing the polynomialp in (2.1.12). In the case of
more than two bands an analogous simplification is not obvious. Further research may result in
the needed simplification or in optimization approaches that work without it.

• CHEBYSHEV wavelets

In section2.2 we made an approach for symmetric wavelets that have naturally close norm
bounds. For the case of the filter lengths (5,3) we have seen, that there are really wavelets
that fulfill the requirements. The one that performs linear interpolation as the CDF-2,2 leads to
compression rates comparable with CDF-2,2 but no superior ones.

For CHEBYSHEV wavelets with longer filters we found a basic structure in section2.2.4. By
the way, CHEBYSHEV wavelets exist at other lengths, too, but it is more difficult to assign to
them additional properties.

Future explorations may find other applications, where the outermost filter coefficients are given
and symmetric wavelet filters with close norm bounds are requested.

• Linear prediction

It was expected that we can improve the compression rate considerably when using image de-
pendent linear prediction (section3.1.3) instead of predicting with predefined filters.

As we can see, the plain prediction does not increase the compression efficiency at the expected
extent, in general. The filters generated do not differ very much from a linear interpolating
one and the energy is decreased slightly better compared to the decrease achieved with a static
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linear interpolation. Conversely this means, that the linear interpolation is a good choice for
most pictures.

An improvement of the compression can be achieved by a following update lifting step (see
below), a technique that is widely used already for common wavelets. It has to be checked, if
multiple adaptive prediction/update combinations can further increase compression efficiency.

A general disadvantage of wavelets designed by least mean square lifting is, that they do not
fulfill any smoothness conditions. This may make compression artifacts more annoying.

A general advantage is: If we use a wavelet which is found through standard assumptions about
the regularity of the input signal, this will fail on images which do not fulfill this assumptions.
E.g. this is the case for noise. Since the least mean square optimization will never produce data
with more energy than before, it is not possible that noise is amplified. As soon as the algorithm
“detects” noise, what means that a prediction is impossible, it will weaken the filter coefficients
accordingly. This theoretical argument can be verified with the noisy satellite photography
sar pripuls . But as you can see, the compression rates are not mentionable better than with
standard wavelets. The noise seems to be too smooth, so that the linear interpolation succeeds
in the first levels, nevertheless.

One can do tests with more high frequent noise. Then the least mean square prediction performs
better than e.g. the CDF-2,2, but it exceeds the limit of a rate of 8 bits per pixel. Instead of a
“compression” to a bit rate above 8 bits, one would better store the original image in this case.

A type of image which can be processed very good by least mean square prediction are images
with very regular patterns superposed. Such patterns could originate e.g. from a coarse printing.

• Weighting

The compression results show that weighting the wavelet filters as in section3.2.1can increase
the compressibility of a transformed image. The visual comparison of images that are lossily
compressed with plain CDF-2,2 and optimally weighted CDF-2,2 proves the better properties
of a weighted CDF-2,2 wavelet.

For general wavelet pairs we know, how to decide if the minimum of the wavelet operator norm
with regard to the weighting factor is smooth or not. If it is smooth, it can be located. A method
for locating a non-smooth minimum has to be derived, yet. At least a faster iteration which is
not nested, should be possible. An alternative may be interleaved iterations.

Again, we may ask for optimal weightings for filter matrices larger than2× 2.

• Norm minimizing update

An additional update lifting step was introduced in section3.2.2for reducing the norm bounds
of the filter operation. Weighting the filters (see above) has shown, that minimizing the norm
bounds may also lead to better pack results. The benchmarks show that this is true for updating
steps, too, but the effect is smaller.

As stated for the weighting problem, the optimization iteration has to be made faster in future
or necessary conditions have to be found, that allow a restriction to a small set of candidates for
the optimum. The current implementation needs too much computational power.

Both least mean square prediction and norm minimizing update steps are methods, that do not
increase the overall compression efficiency at an extent that would excuse the computational
effort of the current implementation.
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4.2 Implementation

The methods found in this work are implemented as extensions to the C++ programubk by J̈org Ritter
which was originally developed for testing the CDF-2,2 wavelet transformation with embedded zero
tree compression, including transformation and compression in partitioned images. You can access
these methods by specifying command line options when invoking the compression program. The
most important options are:

• -l n
Specifies the number of transformation levels.
With the new functions it is possible to specify different wavelets at successive transformation
levels. Each-l option starts a new block of wavelet specifications which are used for the next
n transformation levels.

• -lift type parameters
Specifies a lifting step.
typeselects one of the lifting step types listed below,
parameterscontains parameters specific to the lifting step type.

• -c
Compress the transformed image with an embedded zero tree algorithm similar to the SPIHT
algorithm of Said/Pearlman [14].

• -bpp numberof bits per pixel
Abort the bit stream of compressed data, as soon as the file reaches the size it had, if it would be
saved uncompressed but withnumberof bits per pixel . That is the way the lossy compression
with EZT works. The most relevant data is transferred first, the less relevant data is transferred
last. If you abort the stream you obtain a good approximation of the original image.
Note that the file size measurement does not include header information. Among other things,
the header contains all coefficients of the used lifting filters, which consumes space of

O

(
J ·
∑

k

(1 + |sk|)

)

whereJ is the number of levels andsk are the lifting filters within each level.

The type of wavelet is specified by its lifting step decomposition. The transformation is performed
directly by applying these lifting steps. The lifting steps can be composed of custom filters or filters
that are calculated at run-time. The types which can be passed to the-lift option are:

• weight factor
Weight the filters by a the scalarfactor

• weight minbound
Weight in order to minimize the difference between lower and upper transformation norm
bound. See section2 for explanation.
The necessary factor is approximated at run time.
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• cdf n,m
The standard CDF-2,2 wavelet (developed by COHEN, DAUBECHIES, FEAUVEAU, see [2]) can
be accessed withcdf 2,2 , other wavelets of the CDF family are not implemented yet, but the
option specification allows this future extension.

• cheby n, c
CHEBYSHEV wavelet with a low pass filterh of 2n + 1 taps and an outer coefficientc. Only
members withn = 2 out of this family are supported currently, the ones we considered in
section2.2.2in detail.

• minenergy n, minenergysym n
Do a predicting lifting step which minimizes the energy on the H band
The required lifting filter is determined after the previous steps has been processed. Arbi-
trary filter lengthsn are supported and restriction to symmetric filters is possible with the
minenergysym option.

• minbound n, minboundsym n
Do an update lifting step which minimizes the difference between lower and upper wavelet
norm bound.
The previous lifting steps are merged to a filter pair, and the desired filter is approximated for
that. Arbitrary filter lengthsn and restriction to symmetric filters are allowed byminboundsym .

In the benchmark tables that compare pack rates, values are given that are average numbers of bits
per pixel. This does not match exactly the mathematical definition of the first order entropy, which
can be calculated from the histogram of the image. The pack rates given are the ones achieved with
EZT compression and the measurement is the same as for the-bpp option.

There is another parameter which can not be influenced by command line arguments: The type of
numbers used for the transformation and image storage. The number type can be switched between
integers and floating point numbers, but switching requires recompilation. Working with floating
point numbers gives better packing results (about 0.3 bpp improvement are possible). But you can
not compare the compression rates of the floating point and the integer arithmetic directly, because a
transformed image with floating point values can not be restored exactly after compression. To keep
the option of lossless compression, all benchmarks are made with integer transformations only.

The computations are supported by the Template Numerical ToolkitTNT [10] which provides
functions for doing Linear Algebra in C++. This includes management of matrices and vectors
of arbitrary types, basic matrix/vector operations and various matrix factorization algorithms (LU,
CHOLESKY, QR decomposition).



Appendix A

Test images

Here are the images used for compression tests. Some of them were clipped to a size of a power of
two in respect of the limitations of the current implementation of theEZT pack algorithm.

baboon,512× 512 pixel goldhill, 512× 512 pixel
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lena,512× 512 pixel lena noisy,512× 512 pixel

sarpripuls,512× 512 pixel pepper,512× 512 pixel

mountain,512× 256 pixel parrot,256× 128 pixel
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